Bivalirudin in mechanical circulatory support

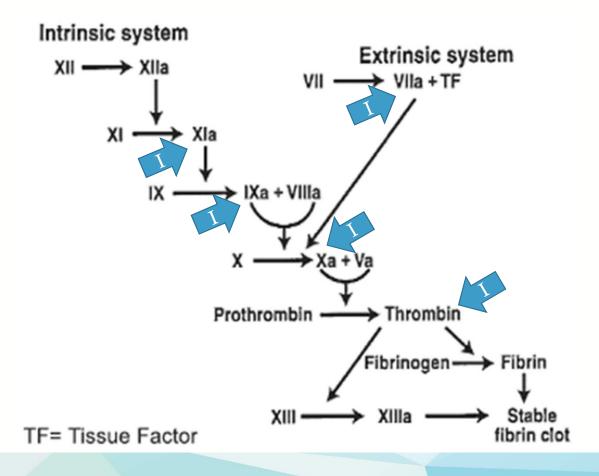
Aaron G. DeWitt, MD Cardiac Critical Care Medicine February 22, 2018

Disclosures

• This whole talk is off label use

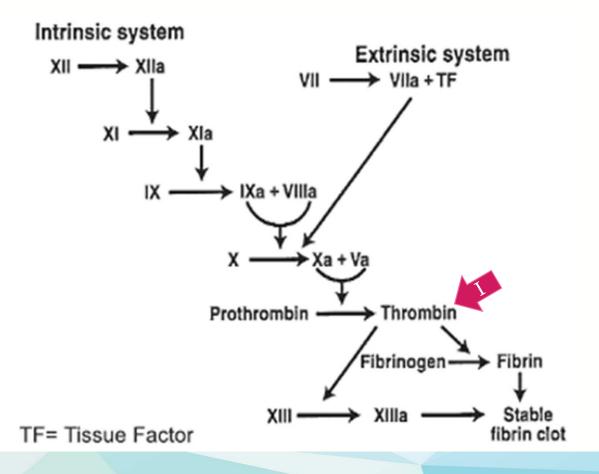
Outline

- The drug
- What is done at CHOP
- The "evidence" in mechanical circulatory support


Bivalirudin

- Direct thrombin inhibitor
 - Heparin is indirect thrombin inhibitor

Clotting Cascade: Heparin + AT3


Heparin +ATIII

- Heparin needs ATIII
- ATIII can be low
 - Low level in neonates
 - Losses (e.g. chylothorax, Fontans with PLE)
- So why don't we just give ATIII
 - As FFP
 - As recombinant ATIII
 - Problem leads to big swings
- Heparin induced thrombocytopenia (HIT)

Clotting Cascade: Bivalirudin

Bivalirudin

- Direct thrombin inhibitor
 - Heparin is indirect thrombin inhibitor
- Thins blood in 2 ways
 - Inhibits thrombin
 - Inhibits thrombin mediated platelet aggregation and activation
- Half-life is ~25 minutes
 - Longer in renal disease
- Does not cross react with HIT antibodies
- Safer than other DTIs (80% proteolytic cleavage, less bleeding)


Bivalirudin monitoring

- Typical
 - Activated partial thromboplastin time (aPTT)
 - Manufacturer recommended
 - Can be influenced by other factors (lupus Ab, coagulation factor deficiencies)
 - Dose response is non-linear
 - Activated clotting time (ACT)
 - Can be influenced by other factors (lupus Ab, coagulation factor deficiencies)
 - Dose response is non-linear

What do I mean by non-linear?

Bivalirudin monitoring

- Atypical
 - Ecarin clotting time (ECT)
 - Prothrominase-induced clotting time (PiCT)
 - Chromgenic anti-Iia
 - Diluted thrombin time (dTT)

What we do at CHOP - monitoring

- Diluted thrombin time (dTT)
 - Diluting patient plasma's
 - Adding back to normal plasma
 - The patient's bivalirudin (or any DTI) acts upon a predictable level of thrombin provided in the normal plasma
 - Less interference from other sources
 - Not affected by lupus inhibitors or elevated d-dimers
 - Slightly dependent on fibrinogen level
 - Can be prolonged with heparin contamination

What we do at CHOP – prior to initiation

- Baseline CBC, BMP (for Cr), PT/PTT, fibrinogen
- Dedicated line
- Consider no/lower bolus if:
 - Stroke
 - Potential for intracranial bleed
 - Bleeding/high risk for bleeding

What we do at CHOP – nuts and bolts

- Bolus: 0.15-0.3 mg/kg IVP (0.75 mg/kg IVP for cath)
- <u>Maintenance:</u> 0.3 mg/kg/hour (1.75 mg/kg/hour for cath)
- Dosage adjustment in renal impairment:
 - Children: Cl_{cr} < 60 mL/minute: Decrease infusion rate by 50%, follow DTT; no change in bolus dose
- **Dosage adjustment in hepatic impairment:** No dosage adjustment is needed

What we do at CHOP – nuts and bolts

• Bivalirudin Dosage Adjustment

DTT (sec)	Hold?	t Repeat DTT		
<60	No	Increase by 20%	2-3 hours after change	
60-90	No	No change	2-3 hours x1, then QD	
91-100	No	Decrease by 20%	2-3 hours after change	
>100	1 hour	Decrease by 50%	2-3 hours after change	

- 2 DTTs are the rapeutic \rightarrow once daily
- Alternatively, PTT 1.5-2.5 times the patient's baseline value may be used to help guide therapy

What we do at CHOP – miscellaneous

Conversion to oral anticoagulant:

- Combined effect on the INR w/ bivalirudin + warfarin
- No loading dose of warfarin
- Bivalirudin and warfarin therapy should be overlapped for at least 5 days
- Bivalirudin therapy can be stopped when INR is >3.5
 - Repeat INR measurement in 2-3 hours
 - If INR is below therapeutic level, bivalirudin therapy may be restarted.
 - Repeat procedure daily until desired INR on warfarin alone is obtained.
- Converting from enoxaparin
 - Not before 8 hours from last dose of enoxaparin
 - If within 8-12 hours, no bolus
 - If after 12 hours, consider bolus
- Hold 4 hours (minimum) prior to surgery/LP

Mechanical Circulatory Support Literature

Extracorporeal Membrane Oxygenation

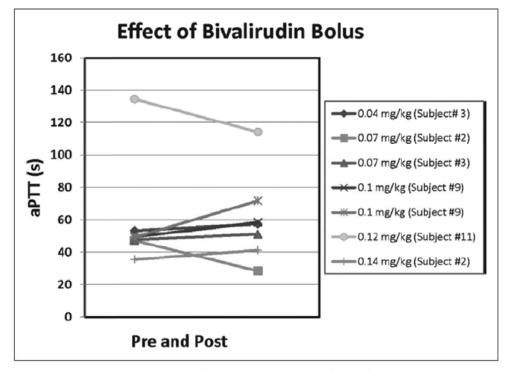
ECMO Systematic Review

Bivalirudin for Alternative Anticoagulation in Extracorporeal Membrane Oxygenation: A Systematic Review

• 9 studies, 58 patients, 24 pediatrics

Filippo Sanfilippo, MD, PhD^{1,2}, Sven Asmussen, MD^{3,4}, Dirk M. Maybauer, MD, PhD^{4,5}, Cristina Santonocito, MD¹, John F. Fraser, MD, PhD⁴, Gabor Erdoes, MD⁶, and Marc O. Maybauer, MD, PhD^{4,5,7}

- 2 studies compared it to heparin, no difference in complications (though in 1 heparin required more transfusion)
- Some used loading dose (0.1 to 0.5 mg/kg), some did not
- Largest pediatric series:
 - Doses ranged from 0.045 mg/kg/hr to 0.48 mg/kg/hr
- Recombinant factor VII may reverse it
 - Has been associated with thrombotic complications



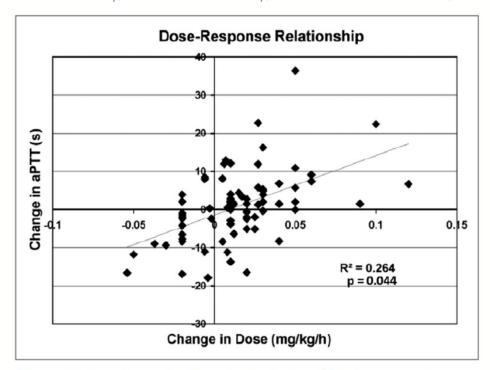
ECMO

Bivalirudin in Pediatric Patients Maintained on Extracorporeal Life Support

Erin L. Nagle, PharmD; William E. Dager, PharmD, FCCM; Jeremiah J. Duby, PharmD; A. Josh Roberts, PharmD; Laura E. Kenny, RN; Manasa S. Murthy, PharmD; Robert K. Pretzlaff, MD

- That large pediatric case series was from UC Davis (12 pts.)
- Bolus dose didn't change PTT 1-2 hours later

Figure 1. Activated partial thromboplastin time (aPTT) response to bolus dose.



ECMO

Bivalirudin in Pediatric Patients Maintained on Extracorporeal Life Support

Erin L. Nagle, PharmD; William E. Dager, PharmD, FCCM; Jeremiah J. Duby, PharmD; A. Josh Roberts, PharmD; Laura E. Kenny, RN; Manasa S. Murthy, PharmD; Robert K. Pretzlaff, MD

- That large pediatric case series was from UC Davis (12 pts.)
- Positive correlation of bivalirudin infusion adjustment to PTT change was poor but significant, $r^2 = 0.264$, p=0.04

Figure 2. Activated partial thromboplastin time (aPTT) response to bivalirudin dose change.

ECMO – postcardiotomy, central cannulation

- · Ranuchi et al.
- Made change to bivalirudin in June 2009
- Looked at 8 patients with heparin & 13 with bilvalirudin
- RA, LA AAo
- Started H @ 5 to 10 IU/kg/hour
- Started B @ 0.03 to 0.05 mg/kg/hour
- Followed ACT, aPTT, and thromboelastography

ECMO

Table 2 Demographics and extracorporeal membrane oxygenation details of the patient population

Parameter	H-group $(n = 8)$	B-group $(n = 13)$	P value	
Age (years)	13.9 ± 19	36.5 ± 29	0.045	
Pediatric patients	5 (62%)	4 (31%)	0.154	
Weight (kg)	37 ± 45	51 ± 34	0.446	
Time on cardiopulmonary bypass (minutes)	230 ± 146	269 ± 142	0.562	
ECMO positioning in the operating room	6 (75%)	9 (69%)	0.772	
Time on ECMO (hours)	80 ± 52	143 ± 73	0.036	
Use of intra-aortic balloon pump	1 (12%)	5 (38%)	0.336	
Total bleeding (ml/kg/day)°	51 ± 46	16 ± 13	0.015	
Total packed red cells (ml/kg/day)	25 (51)	15 (20)	0.067	
Total fresh frozen plasma (ml/kg/day)	12 (76)	5.9 (9)	0.020	
Total platelets (ml/kg/day)	33 (53)	3 (7)	0.008	
Total purified antithrombin (IU/kg/day)	13 (31)	7 (13)	0.048	
Cost in adults (€/day)	3,313 ± 2,818	1,807 ± 886	0.165	
Cost in children (€/day)	760 ± 237	312 ± 56	0.008	

Data presented as mean ± standard deviation, number (%) or median (interquartile range). ECMO, extracorporeal membrane oxygenation. ° during the first 48 hours

But...

- 2 of 9 heparin pts survived
- 3 of 13 bivalirudin pts survived
- 1 infant had thromboembolic event (bivalirudin group)
- And they cautioned in blood stagnation
 - Bivalirudin gets rapidly cleaved
 - On CPB
 - In the heart (dilated atria, smoke)

ECMO – adults, H vs B

- Retrospective
- 72 patient (44 bivalirudin)
- Bivalirudin group with more cardiogenic & less septic shock
- No difference in:
 - Thrombotic events
 - In hospital morality
 - 30-day mortality
 - % time in therapeutic range
 - Neurologic events
 - Vascular complications
 - Major bleeding
 - Minor bleeding

Ventricular Assist Devices

VAD – adult, bridge after VAD placement

- Retrospective, case matched, HIT excluded
- Thrombotic complications
 - Heparin 5%, Bivalirudin 20%, Nothing 27%
- Cost
 - Bivalirudin = \$6200 per patient
 - Heparin = \$150 per patient
- But...
 - mean dose of bivalirudin was 0.082 mg/kg/hour (we start 0.3)

Comparison of Anticoagulation Strategies After Left Ventricular Assist Device Implantation

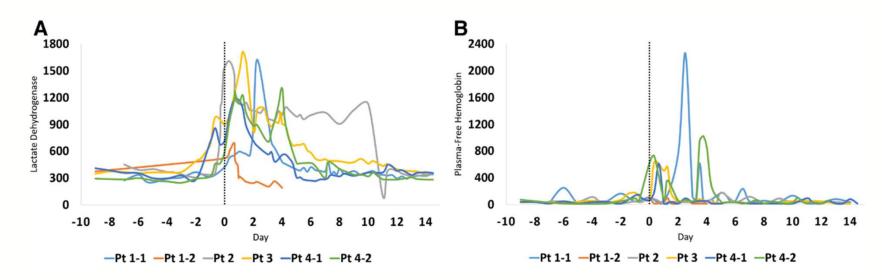
Alexander Kantorovich,*† Jodie M. Fink,‡ Michael A. Militello, \S Seth R. Bauer, \S Edward G. Soltesz, \P and Nader Moazami \P

VAD

Bivalirudin for Treatment of LVAD Thrombosis: A Case Series

LYNNE M. SYLVIA,*† LINDA ORDWAY,‡ DUC T. PHAM,§¶ DAVID DENOFRIO,‡¶ AND MICHAEL KIERNAN‡¶

- 10 suspected cases of VAD thrombosis
- Initiated per protocol
 - 0.03 to 0.15 mg/kg/hour
 - based on renal function and baseline INR
- 9 responded
 - 7 discharged
 - 2 had to remain in house until transplant for recurrence
- median duration of bivalirudin therapy was 22 days (range: 11-237)
- median cost of bivalirudin therapy was \$79,800 (range: \$31,359-
- \$1,281,737)



Successful Treatment of Pediatric Ventricular Assist Device Thrombosis

DEVIN CHETAN,*† HOLGER BUCHHOLZ,*† MARY BAUMAN,†‡ VIJAY ANAND,†§ PAULA HOLINSKI,†§ AND JENNIFER CONWAY*†

- Another case series (10 HeartWare patients)
 - 4 had pump thrombosis (pump parameter change, rise in LDH & pHgb)

Initial Postoperative

VAD

Successful Treatment of Pediatric Ventricular Assist Device Thrombosis

DEVIN CHETAN, *† HOLGER BUCHHOLZ, *† MARY BAUMAN, †‡ VIJAY ANAND, †\$ PAULA HOLINSKI, †\$ AND JENNIFER CONWAY*†

- Patient 1
 - 1st time heparin only w/out plt inhibitor (neuro) → exchanged pump
 - 2nd time changed to bivalirudin, transplanted 4d later
- Patient 2
 - Thrombosis of VAD exchanged. Bridged with bivalirudin 2nd time
- Patient 3
 - Got local then systemic tPA. Bivalirudin after that
 - Readmitted several times thrombosis → bivalirudin used each time
- Patient 4: Several episodes of thrombosis → bivalirudin not used

VAD - Berlin

Bivalirudin Versus Heparin as an Anticoagulant During Extracorporeal Membrane Oxygenation: A Case-Control Study

Marina Pieri, MD,* Natalia Agracheva, MD,* Enrico Bonaveglio, MD,* Teresa Greco, MSc,* Michele De Bonis, MD,† Remo Daniel Covello, MD,* Alberto Zangrillo, MD,* and Federico Pappalardo, MD*

- 10 tx with Bivalirudin
- 10 matched historical controls tx with Heparin
- Fewer PTT swings >20%
- No difference in
 - Bleeding
 - Thromboemoblic complications
 - High PTT
 - # of anticoagulation dose adjustment

"Failed" conventional therapy; Berlin EXCOR

- Bivalirudin 0.685 mg/kg/hour (range, 0.1–0.8 mg/kg/hour
- Epoprostenol 2 ng/kg/min (range 2–20 ng/kg/min)

No.	Failed conventional treatment	Reason for alternate anti-coagulation	Conversion to BV/EP (VAD POD)	Therapeutic BV dose (mg/kg/ hour)	EP dose (ng/kg/ min)	ASA	Dipyridamole	Clopidogrel	BV/EP duration (days)
1	Yes	New diagnosis HIT	7	0.26	2	No	Yes	No	15
2	No	HIT	0	0.1	20	Yes	Yes	Yes	45
3	Yes	VAD thromboses, stroke	7	0.8	10	Yes	Yes	Yes	50
4	No	Prosthetic MV	0	0.65	2	Yes	Yes	Yes	97
5	Yes	VAD thromboses, peripheral thromboembolism	13	0.72	4	Yes	Yes	Yes	142
6	Yes	VAD thromboses, stroke	32	0.8	2	Yes	No	Yes	48

1 stroke

ASA, acetylsalicylic acid; BV, bivalirudin; EP, epoprostenol; HIT, heparin-induced thrombocytopenia; MV mitral valve; POD, post-operative day; VAD, ventricular assist device.

VAD placement

- Typically de-aired anterograde
 - Attach to LV, fill with blood, then have to connect to aorta
- They do retrograde
 - Sewing ring, attach to aorta, fill backwards, then attach to fibrillating LV
 - 60-90 seconds
- Less time with stasis of blood in the VAD (Remember bivalirudin gets degraded by proteolysis!)

A modified technique for implantation of the HeartWare™ left ventricular assist device when using bivalirudin anticoagulation in patients with acute heparin-induced thrombocytopenia

Michiel Morshuis^a, Jochen Boergermann^a, Jan Gummert^a and Andreas Koster^{b,*}

Berlin at CHOP

• Bivalirudin is our first line bridge

Cardiopulmonary Bypass

Bypass (few case reports in peds)

- 2 infants w/ HIT:
 - Bolus 1mg/kg
 - Infusion 2.5mg/kg/hr
 - 50mg to CPB circuit
 - Kept ACT >400
- 11yo w/ HIT needed VAD
 - Bolus 1mg/kg 15 minute before bypass anticipation
 - ACT 385 (goal 400 or >2.5x baseline). 2nd bolus of 0.85mg/kg
 - Infusion increased from 2.5 to 3 (up to 5 when giving pRBCs and MUF)
 - Also bolused pump
 - Lower venous reservoir level to avoid stagnation; venous sampling line flushed with air after use
 - Tranexamic acid bolus and infusion given as well
 - Argatroban used post-operatively

Summary

- Bivalirudin has clear advantage when there is HIT
- There are theoretical advantages in other patients requiring mechanical support
- Evidence is shaky but there is probably a role for bivalirudin in
 - Tx of VAD thrombosis
 - Prevention of VAD thrombosis after heparin failure
 - Maybe ECMO if dosed properly (especially if central cannulation)
- PTT monitoring is likely not sufficient
- Whatever you do...make a protocol
- Typical procedures need alteration to avoid blood stasis

References

- Buck. Bilvaliruidin as an aternative to heparin for anticoagulation in infants and children. J Pediatr Pharmacol Ther 2015;20(6):408–417
- Berei et al., Evaluation of sysetemic heparin vs bivalirudin in adult patients: supported by ECMO. ASAIO Journal 2017
- Chetan et al., Successful treatment of pediatric VAD thrombosis. ASAIO Journal 2017,
- Faella, Bivalirudin Anticoagulation for a Pediatric Patient with Heparin-Induced Thrombocytopenia and Thrombosis Requiring Cardiopulmonary Bypass for Ventricular Assist Device Placement. *JECT*. 2016;48:39–42
- · Kantorovich et al., Comparison of anticoagulation strategies after LVAD implantation. ASAIO Journal. 2016
- Morshuis et al., A modified technique for implantation of the HeartWare LVAD when using bilvarudin anticoagulation in patients with HIT. *Interactive CardioVascular and Thoracic Surgery* 17 (2013) 225–226.
- Nagle et al., Bivalirudin in Pediatric Patients Maintained on Extracorporeal Life Support. Ped Crit Care Med. 2013, 14:e182
- Pieri et al., Bivalirudin vs heparin as an anticoagulant during ECMO. *Journal of Cardiothoracic and Vascular Anesthesia*, Vol 27, No 1 (February), 2013: pp 30-34
- Ranucci et al. Bivalirudin-based versus conventional heparin anticoagulation for postcardiotomy extracorporeal membrane oxygenation. *Critical Care* 2011, 15:R275
- Rutledge et al., Antithrombotic strategies in children receiving long-term Berlin Heart EXCOR ventricular assist device therapy. *J Heart Lung Transplant* 2013, 32:569–573
- Sanfilippo et al., Bivalirudin for alternative anticoagulation in ECMO: A Systematic Review. *Journal of Intensive Care Medicine* 2017, 32: 312-319
- Sylvia et al., Bivalirudin for Treatment of LVAD Thrombosis: A Case Series. ASAIO Journal 2014, 60:744-747.

