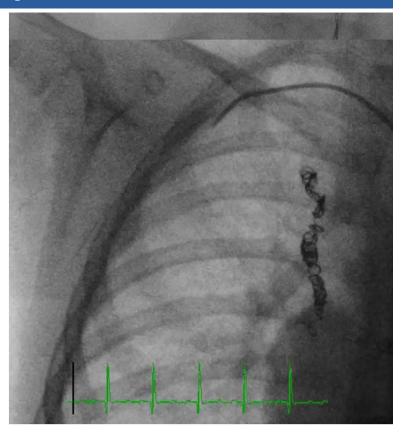
Lunch Talk: Focus on...

Vascular Health and Angiogenesis in Congenital Heart Care

Andrew C. Glatz, MD MSCE Associate Professor of Pediatrics

21st Annual Update on Pediatric and Congenital Cardiovascular Disease February 23, 2018

Disclosures


No relevant disclosures

Case example

- 3 yo PA/IVS, RV hypoplasia
 - Central shunt as neonate
 - Bidirectional Glenn at 5 months
 - Chylous effusions after Glenn
- 7/26/17: pre-Fontan XMR
 - CollF/Ao: 34%
 - Glenn pressure 6-7 mmHg
 - Collaterals embolized

Audience poll #1

- In your practice/center, which patients get a pre-Fontan cath?
 - Almost all
 - Almost none
 - Select patients

Audience poll #2

- In your practice/center, which patients get a pre-Fontan MRI?
 - Almost all
 - Almost none
 - Select patients

Audience poll #3

- In your practice/center, for patients who get a pre-Fontan cath, collateral embolization is performed...
 - In almost all
 - In almost none
 - In select patients

Case example (cont.)

- 8/9/17: fenestrated extra-cardiac Fontan
 - 7 days of chest tube
 - 14 days total length of stay
- 1/20/18: readmitted with large right pleural effusion
 - Coronavirus, RSV positive
 - Chest tube placed → chyle
 - Increased diuretics, low fat diet, started sildenafil
 - 2/7/18: cardiac cath...

Case example (cont.)

- Cardiac cath
 - High fontan pressures
 - LPA stenosis
 - Open fenestration
 - Collaterals embolized
 - LPA stented

Case example (cont.)

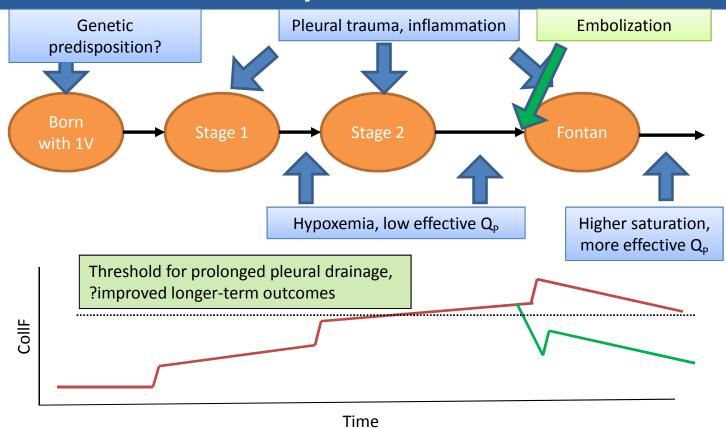
- Chest drainage slowed a few days after cath then stopped
- Chest tube pulled
- Discharged 7 days after cath

What do we know about collaterals in single ventricle patients?

Collaterals in 1V patients

- Quantifiable by cardiac MRI (Whitehead, Circ CV Imaging, 2009)
- Ubiquitous (Whitehead, Am J Cardiol, 2015)
- Related to preceding cyanosis, peri-operative morbidity, and pleural inflammation (Glatz, Heart, 2015)
- Hemodynamically important (Downing, Circ CV Imaging, 2013)
- Associated with acute post-Fontan clinical outcomes (Glatz, Circ CV Imaging, 2012)
- Regress after the Fontan (Whitehead, Am J Cardiol, 2015)

What do we know about the efficacy of collateral embolization in the cath lab?

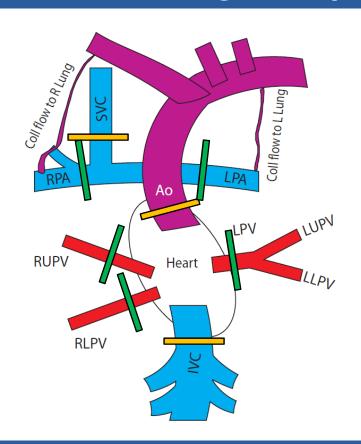

Collateral embolization

- Acutely efficacious (Dori, Circ CV Interv, 2013)
- Durability is not known
- Effects on post-Fontan course are not known
- There is a lot of practice variation
- It is, at best, a band-aid

Conceptual Model

Our approach to the pre-Fontan

- XMR
- If MRI shows something concerning, proceed to cath
- Aggressive embolization during cath using particles and coils
- Fontan completion within 2 weeks


Thank you

Stage 2 physiology

$$\mathbf{Q}_{\mathbf{coll_syst}} =$$

$$\mathbf{Q}_{\mathsf{Ao}} - (\mathbf{Q}_{\mathsf{SVC}} + \mathbf{Q}_{\mathsf{IVC}})$$

$$\mathbf{Q_{coll_pulm}} = (Q_{RPV} + Q_{LPV}) - (Q_{RPA} + Q_{LPA})$$

$$Q_{coll} = (Q_{coll_syst} + Q_{coll_pulm}) / 2$$

Results, cross-sectional data

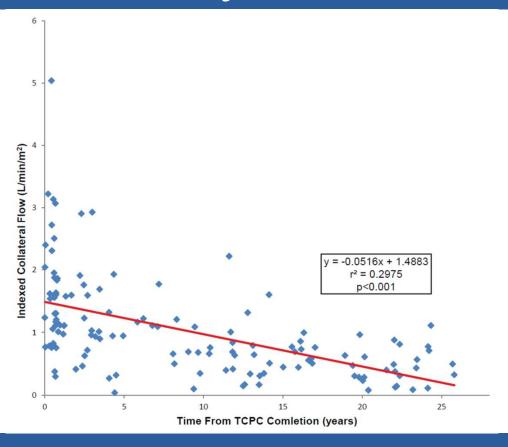
	SCPC	ТСРС	p (SCPC vs. TCPC)	Controls	p (SCPC vs. Ctrl)	p (TCPC vs. Ctrl)
n	115	135		18		
Age (years)	2.6±1.2	12.2±8.8	<0.001	10.1±7.4	<0.001	1.0
BSA (m²)	0.53±0.10	1.16±0.51	<0.001	1.05±0.49	<0.001	1.0
Q _{Ao} (L/min/m²)	4.85±1.1	3.61±1.0	<0.001	3.9±0.9	0.007	1.0
Q _{coll} (L/min/m²)	1.64±0.8	1.03±0.8	<0.001	0.21±0.27	<0.001	<0.001
100xQ _{coll} /Q _{Ao} (%)	34%±12%	26%±15%	<0.001	5%±6%	<0.001	<0.001
100xQ _{coll} /Q _P (%)	48%±17%	29%±17%	<0.001	5%±5%	<0.001	<0.001
Q _P (L/min/m ²)	3.4±0.9	3.3±0.8	1.0	4.1±1.0	0.006	0.005
Q _S (L/min/m ²)	3.2±0.9	2.6±0.6	<0.001	3.7±0.8	0.11	<0.001
Q _{PA} (L/min/m²)	1.7±0.6	2.3±0.6	<0.001	3.9±0.9	<0.001	<0.001
Q _P / Q _S	1.10±0.3	1.31±0.40	<0.001	1.13±0.2	1.0	0.20

Results, Glenn patients (n=96)

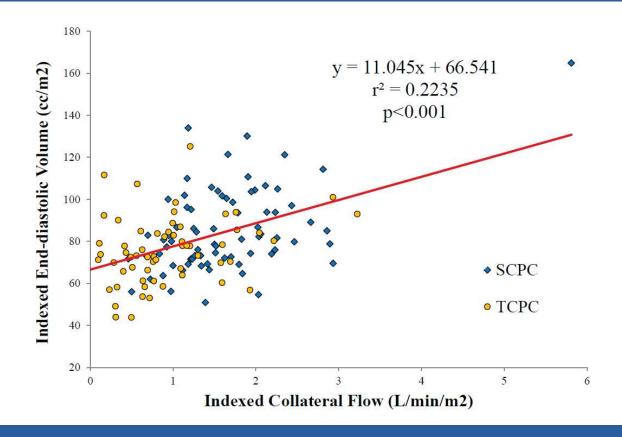
Table 2a. Correlation between potential risk factors and CollF measures								
Risk factor	CollF		CollF / Ao flow		CollF / PV flow			
KISK Ideloi	rho	р	rho	р	rho	р		
Total ventilator days	0.24	0.03	0.29	0.008	0.37	0.0007		
Total ICU days	0.23	0.04	0.29	0.008	0.39	0.0003		
Total hospital days	0.25	0.02	0.33	0.002	0.39	0.0003		
Total chest tube days	0.21	0.04	0.24	0.02	0.2	0.05		
O ₂ sat at Stage 2 discharge	0.22	0.04	0.19	0.06	0.06	0.57		

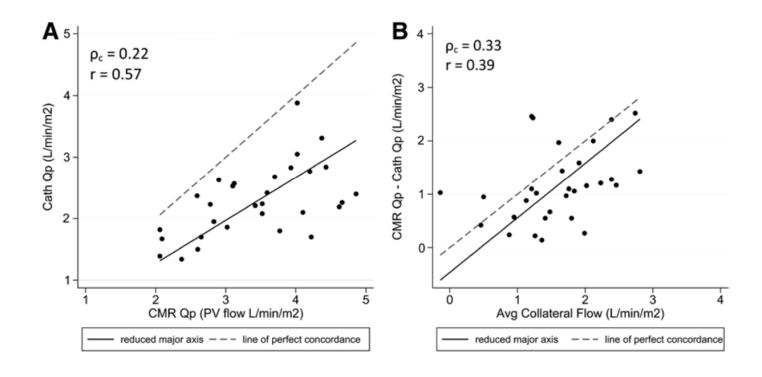
➤ No associations found with hemoglobin, pulmonary artery size, pre-Stage 2 cath variables, or Stage 2 surgical support times.

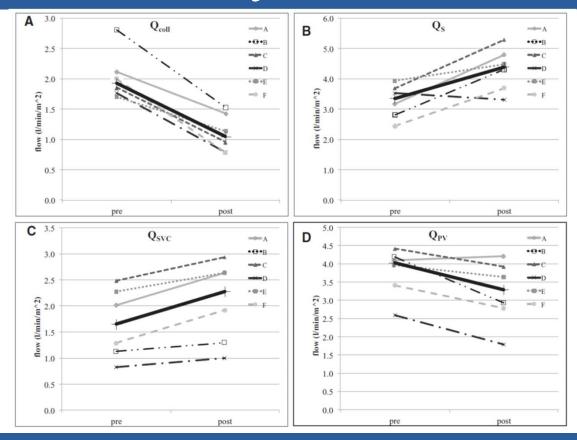
Estimates of effect size

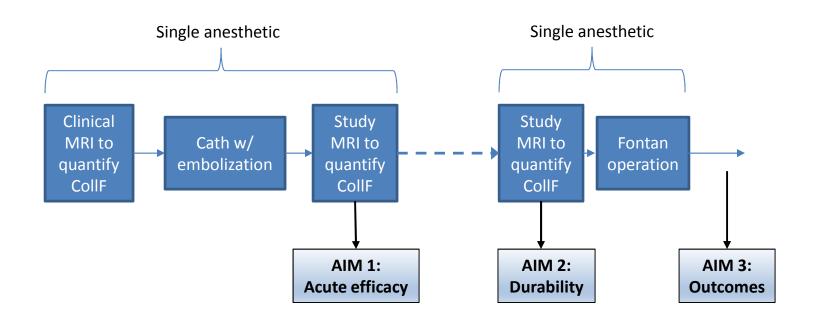

	Chest tube ≥ 10d		Hospitalizatio	n ≥ 7d	Hospitalization ≥ 14d		
	OR*	р	OR*	р	OR*	р	
Q _{coll}	22.7 (2.2,239)	0.009	9.2 (1.4,61)	0.02	1.46 (0.6,3.3)	0.4	
Q _{coll} /Q _{Ao}	1.24 (1.06,1.4)	0.007	1.09 (1,1.2)	0.048	1.06 (0.99,1.14)	0.1	
Q _{coll} /Q _{PV}	1.18 (1.05,1.34)	0.006	1.07 (1,1.14)	0.048	1.04 (0.98,1.09)	0.17	

^{*}From logistic regression, adjusted for presence of a fenestration and Fontan type (extra-cardiac conduit v. intraatrial lateral tunnel); Q_{coll} = systemic-pulmonary collateral flow; Q_{Ao} = aortic flow; Q_{PV} = pulmonary venous flow


"Natural" history late after Fontan


Collaterals as a volume load


Cath underestimates Q_P


Acute efficacy of embolization

Children's Heart Foundation grant

