CoRe PCIC Collaborative Research In Pediatric Cardiac Intensive Care

Early Childhood Outcomes Following Repair of Truncus Arteriosus: A Contemporary Multicenter Analysis

Jason R. Buckley; Venu Amula; Peter Sassalos; John M. Costello; Ilias Iliopoulos; Aimee Jennings; Christine M. Riley; Katherine Cashen; Sukumar Suguna Narasimhulu; Keshava Murty Narayana Gowda; Adnan Bakar; Michael Wilhelm; Aditya Badheka; Arthur J. Smerling; Elizabeth AS Moser; Christopher W. Mastropietro

Disclosures

None

Background

- Truncus arteriosus (TA)
 - Complex defect requiring multiple interventions throughout life
 - Relatively uncommon
 - ~300 US cases per year, 0.7% of CHD, 4% of CCHD
 - Perioperative morbidity and mortality continues to be significant
 - Reports describing intermediate and long-term outcomes are limited to single-center experiences

Aims

- Describe contemporary early childhood outcomes after repair of truncus arteriosus
- Identify risk factors for RV-PA conduit intervention

Methods

- Multicenter, retrospective cohort study
- Inclusion: any patient who underwent surgery for TA
- Study period: 2009 2016
- Exclusion:
 - concomitant arch obstruction / interrupted aortic arch
 - "hemitruncus" and "pseudotruncus"

Methods: Institutions

- 1. Riley Hospital for Children, Indianapolis, IN
- 2. Cleveland Clinic, Cleveland, OH
- 3. Children's Hospital of Michigan, Detroit, MI
- 4. Morgan Stanley Children's Hospital of New York, New York, NY
- 5. North Shore-LIJ Cohen Children's Medical Center, New Hyde Park, NY
- 6. Medical University of South Carolina, Charleston, SC
- 7. Arnold Palmer Hospital for Children, Orlando, FL
- 8. Seattle Children's Hospital, Seattle, WA
- 9. Ann & Robert H. Lurie Children's Hospital of Chicago, IL
- 10. University of Iowa Stead Family Children's Hospital, Iowa City, IA
- 11. Children's National Health System, Washington, DC
- 12. University of Utah Health, Salt Lake City, UT
- 13. Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- 14. University of Michigan C.S. Mott Children's Hospital, Ann Arbor, MI
- 15. American Family Hospital, Madison, WI

Methods: Definitions and Analysis

- Operative mortality: STS-CHSD definition
- Late mortality: death after hospital discharge or > 30 days post-op
 - Kaplan-Meier survival analysis and Cox Regression analysis to determine risk factors for overall mortality
- RV-PA conduit intervention: cath or surgical intervention
- RV-PA conduit replacement: surgical replacement
 - Fine Gray competing risk model used to determine probability of any RV-PA conduit intervention or replacement over time

Results

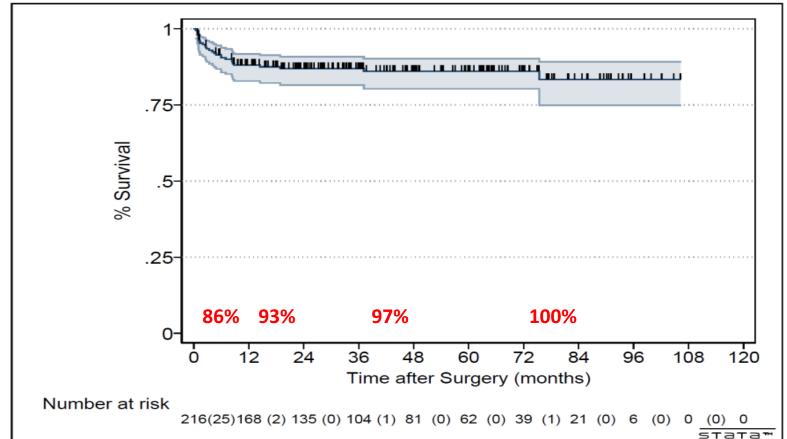
- 216 patients with TA, 15 centers
- Operative mortality: n = 16 (7.4%)
- Overall mortality: n = 29 (13.4%)
- 207 patients received RV-PA conduits
 - 8 underwent direct anastomosis of main PA
 - 1 underwent systemic-to-PA shunt
- Median follow-up: 2.9 years (range: 0.1 8.8 years)

Results: Baseline Characteristics

Variable	n	%
Prenatal diagnosis	135	63%
Prematurity	42	19%
Any chromosomal abnormality	83	38%
DiGeorge syndrome	61	28%
Non-cardiac abnormality	63	29%
Preop mechanical ventilation	45	21%
Preop NEC	17	8%

Results: Operative Data

Variable	n / median	% / (IQR)
Truncus Type (Collette-Edwards)		
Type 1	112	52 %
Type 2	90	42%
Type 3	14	6%
Age at surgery, days	10	(7, 24)
CPB Duration, min	150	(124, 186)
Corticosteroids	161	75 %
Truncal valve repair	36	17%


Results: Postoperative Data

Variable	n	%
Delayed sternal closure	126	58%
ЕСМО	22	10%
iNO utilization	102	47%
Postoperative infection	43	20%
Postoperative arrhythmia	78	36%
Reoperations	47	22%
Operative mortality	16	7%

Results: Overall Mortality

Cox Regression Analysis: Overall Mortality

Risk Factor	Hazard Ratio	95% CI		p-value
DiGeorge syndrome	2.2	1.1	4.7	0.04
Preoperative ventilation	2.4	1.2	5.4	0.02
Delayed sternal closure	3.3	1.1	9.8	0.04
Postoperative ECMO	5.3	2.3	11.8	<0.01

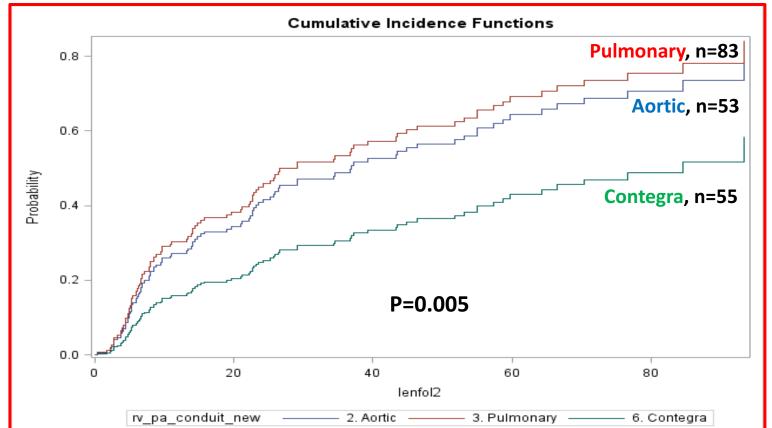
Bivariate Analysis: Risk Factors for Late Mortality

Risk Factor	Operative mortality	p-value	Overall mortality	p-value
DiGeorge syndrome	3 (19%)	0.38	13 (45%)	0.03
Preoperative ventilation	5 (31%)	0.34	13 (45%)	0.02
ECMO	8 (50%)	<0.01	11 (38%)	<0.01
Delayed sternal closure	15 (94%)	<0.01	25 (86%)	<0.01

Results: RV-PA Conduit Characteristics

Variable	n / median	% / (IQR)
RV-PA conduit type		
Pulmonary homograft	83	38%
Contegra	55	25%
Aortic homograft	53	24%
Femoral vein	13	6%
Direct anastomosis / patch	8	4%
Other	4	2%
RV-PA Conduit Size, mm	11	(9, 12)

Results: RV-PA Conduit Intervention


Conduit	Pulmonary (n=83)	Aortic (n=53)	Contegra (n=53)
Duration of Follow-up (months)	36 (18, 60)	36 (22, 63)	42 (15, 77)
# of conduit interventions	48 (58%)	29 (55%)	20 (36%)
Time to first intervention (months)	11 (6, 24)	14 (6, 27)	20 (13, 46)

^{*}Data represented as median (IQR) or absolute counts (%) as appropriate

Results: Probability of Conduit Intervention

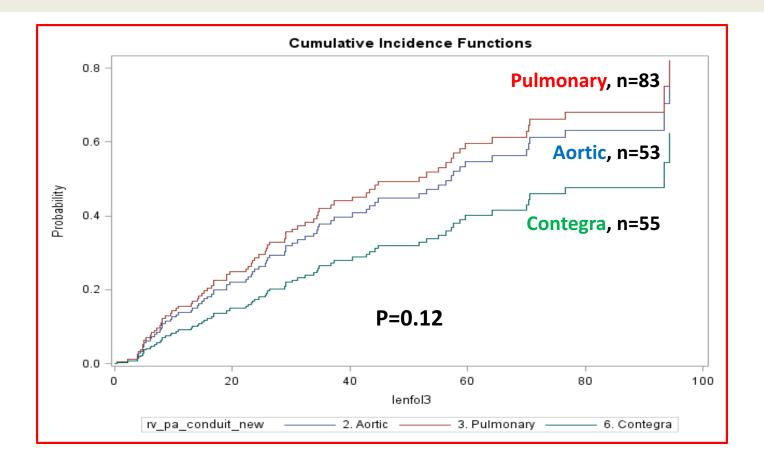
Results: Probability of Conduit Intervention

Conduit Comparison	Hazard Ratio	95%	6 CI	p-value
Pulmonary vs. Aortic	1.14	0.72	1.80	0.57
Aortic vs. Contegra	1.84	1.05	3.20	0.03
Pulmonary vs. Contegra	2.10	1.27	3.48	< 0.01

Results: Probability of Conduit Intervention

Conduit Comparison	Hazard Ratio	95%	6 CI	p-value
Pulmonary/Aortic vs. Contegra	1.8	1.1	3.0	0.03
Conduit Size (mm/m²)	1.05	1.05	3.20	<0.01

Results: RV-PA Conduit Replacement


Conduit	Pulmonary (n=83)	Aortic (n=53)	Contegra (n=53)
Duration of Follow-up (months)	36 (18, 60)	36 (22, 63)	42 (15, 77)
# of conduit replacements	39 (47%)	23 (43%)	19 (35%)
Time to replacement (months)	23 (7, 38)	27 (14, 37)	24 (9, 55)

^{*}Data represented as median (IQR) or absolute counts (%) as appropriate

Results: Probability of Conduit Replacement

Results: Probability of Conduit Replacement

Conduit Comparison	Hazard Ratio	95%	6 CI	p-value
Pulmonary/Aortic vs. Contegra	1.5	0.9	2.6	0.12
Conduit Size (mm/m²)	1.05	1.01	1.08	<0.01

Limitations

- Retrospective analysis
 - Differential losses to follow-up?
- Relatively small number of mortalities
- No specific criteria for conduit interventions
 - May vary across centers
- Data on additional long-term outcomes not recorded
 - RV function, quality of life, neurologic development

Conclusions

- Truncus arteriosus continues to be associated with significant morbidity and mortality
- "Late" mortality predominates within the 1st year of life
- DiGeorge syndrome and preoperative ventilation are risk factors for late mortality – higher surveillance?
- Probability of post-discharge Contegra conduit intervention over time is lower than that of aortic and pulmonary homografts

Thank you for your attention.

CoRe PCIC

Collaborative Research
In Pediatric Cardiac
Intensive Care