

Extracardiac Malformations and Their Influence on Surgical Outcomes

Carlos M. Mery, MD, MPH

Congenital Heart Surgery Texas Children's Hospital

Associate Professor Surgery and Pediatrics Baylor College of Medicine

No disclosures

How common are extracardiac malformations in patients with congenital heart disease?

What type of extracardiac malformations are common in patients with congenital heart disease?

What is the effect of extracardiac malformations on outcomes after congenital heart surgery?

Extracardiac malformations

- Chromosomal abnormalities
 - Trisomies 15, 18, 21
 - Turner syndrome
- Recognized patterns of malformations
 - DiGeorge syndrome
 - VACTERL
 - CHARGE
- Extracardiac malformations (single or multiple) without recognized pattern of malformation

Table 1

Isolated and associated anomalies in 4005 cases with congenital heart defects ascertained from 1979 to 2004 in 346,831 consecutive pregnancies in Northeastern France.

	N°	%	Prevalence ^a	
Associated malformations				
Recognized patterns ^b	99	2.5	2.8	
Unrecognized Patterns of MCA ^c	602	15.0	17.4	
Sub total	701	17.5	20.2	
Chromosomal	354	8.8	10.2	
Total Associated	1055	26.3	30.4	
Isolated malformation	2950	73.6	85.0	
Total	4005	100	115.5	

^a Total prevalence per 10,000 pregnancies.

Stoll et al. Eur J Med Gen 2015;58:75-85

Table 1 Prevalences of extracardiac malformations in the congenital heart disease (CHD) population

	Cases n (%)	Controls N (%)	OR (95 % CI)
Total extracardiac malformations	13,213	845,494	2.01
	(13.6)	(7.0)	(1.97–2.14)
Genetic syndromes	2,137	36,235	2.52
	(2.2)	(0.3)	(2.44–2.61)
Nonsyndromic congenital malformation	11,075	809,258	1.88
	(11.4)	(6.7)	(1.73–1.94)
Multiple organ system malformation ^a	2,332	48,314	1.39
	(2.4)	(0.4)	(1.14–1.60)

OR odds ratio, CI confidence interval

Egbe et al. Pediatr Cardiol 2014;35:1239-45.

Data from Nationwide Inpatient Sample (NIS) Births 1998-2008 97,154 pts CHD 12,078,482 controls

b Includes syndromes, associations, sequences and spectrums.

^c MCA: multiple congenital anomalies.

 $^{^{\}rm a}$ Multiple organ-system malformation is an extracardiac malformation involving ${\geq}2$ organ systems

Table Prog	Class of defect	All CHDs*	resence	AVSDs [‡]	nonca	n (9/)	politan Atlanta Congenital Defects SDs VSDs Cell Ebstein anomaly
Isolated MCAs ^{‡‡} Syndror	Isolated	5695 (71.3)	(3.2) 249 (6.3) 49 (0.5) 24	109 (24.4)	606 (1 189 (1 224 (1	60 (90.9)	(%) n (%) n (%) n (%) 6 (85.0) 580 (69.5) 129 (82.2) 60 (90.9) 6 (9.5) 115 (13.8) 20 (12.7) 4 (6.1) 4 (5.5) 140 (16.8) 8 (5.1) 2 (3.0)
Trisomy Trisomy	MCAs ⁺⁺	1080 (13.5)	(0.5) 24 (2.3) 1 (.4) 8	40 (8.9)	127 (4 (6.1)	8 (2.5) 83 (9.9) 1 (0.6) 1 (1.5) 5 (0.3) 26 (3.1)
Trisomy 22q11 o Laterali	Syndromes ^{§§}	1048 (13.1)	1.6) 2	298 (66.7)	6 (2 (3.0)	3 (0.2) 6 (0.7) 1 (0.6) 3 (0.2) 4 (0.5) 2 (1.3)
Total *Congenita	Trisomy 21	536 (6.7)	00) 322	258 (57.7)	1020 (1 (1.5)	6 (100) 835 (100) 157 (100) 66 (100.0)
†Tetralogy ‡Atrioventr §Left ventr	Trisomy 18	134 (1.7)		19 (4.3)		, ,	
¶Hypoplas Right ven	Trisomy 13	63 (0.8)		7 (1.6)			n Atlanta Congenital
††Ventricul ‡‡Multiple	22q11 deletion	54 (0.7)		, ,			cts Program
§§Chromos	Laterality defects	161 (2.0)					I stillborn infants and es with CHD
	Total	7984 (100)		447 (100)		66 (100.0)	968-2005
N	filler et al. J Pediatr 2011;159):70-8.	J		J		J

Prevalence in Neonates Undergoing CHS (STS)

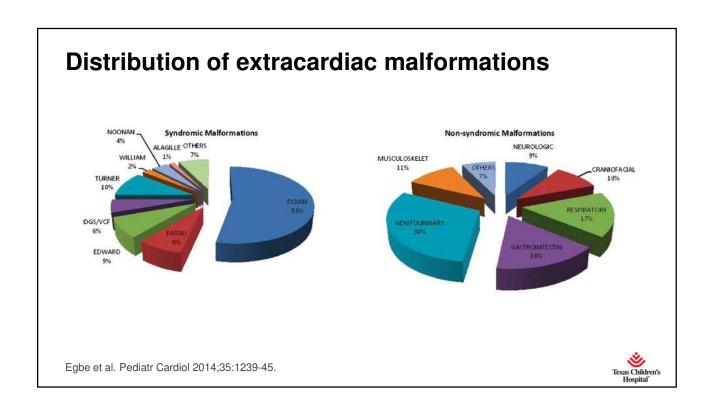
	NC/GA/S	NC	GA/S	Total
AVSD	212 (59%)	28 (8%)	207 (58%)	357
TOF	417 (44%)	73 (2%)	384 (43%)	1383
Other SV	627 (29%)	151 (7%)	527 (25%)	2147
HLHS	294 (11%)	46 (2%)	272 (11%)	2599
TGA	111 (4%)	15 (1%)	101 (4%)	2778
Total	2894 (19%)	479 (3%)	2661 (17%)	15376

NC: Non-cardiac anatomic abnormalities, GA: Genetic abnormalities, S: Syndromes.

Patel et al. Ann Thorac Surg 2016;102:1607-14.

Prevalence of extracardiac malformations in CHD

- 10-30% of patients with CHD will have associated extracardiac malformations
- Prevalence varies depending on the particular CHD diagnosis
- The mix between genetic syndromes, recognized patterns, and isolated/multiple congenital anomalies differs among different series



How common are extracardiac malformations in patients with congenital heart disease?

What type of extracardiac malformations are common in patients with congenital heart disease?

What is the effect of extracardiac malformations on outcomes after congenital heart surgery?

Distribution of Non-Syndromic ECM in CHD

	Egbe et al. 2014 (N = 11075)	Stoll et al. 2015 (N = 1197)	Miller et al. 2011 (N = 1080)
Genitourinary	30%	20%	25%
Respiratory	17%	2%	11%
Gastrointestinal	16%	16%	25%
Craniofacial	10%	15%	Not specified
Neurologic	9%	10%	19%
Musculoskeletal	11%	18%	35%

Distribution of ECM at TCH

Extracardiac malformation	N (%)
Respiratory / airway	246 (24%)
Neurological	120 (12%)
Genitourinary	110 (11%)
Craniofacial	100 (10%)
Gastrointestinal	97 (10%)
Musculoskeletal	83 (8%)
Others	245 (24%)
Total	1001

How common are extracardiac malformations in patients with congenital heart disease?

What type of extracardiac malformations are common in patients with congenital heart disease?

What is the effect of extracardiac malformations on outcomes after congenital heart surgery?

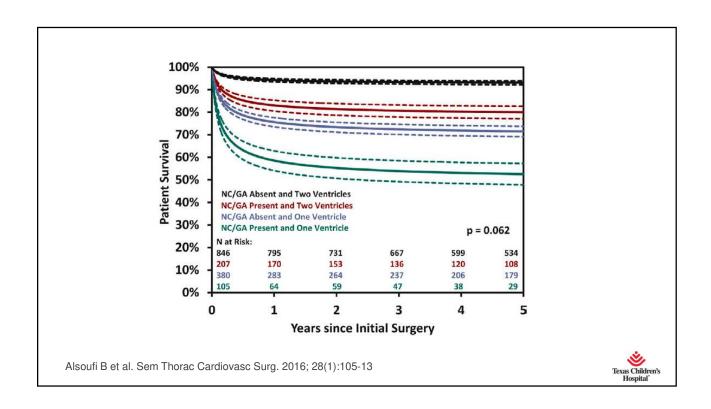
STS CHSD Mortality Risk Adjustment Model

Variable	OR (95% CI)	p Value
Age in neonates, per week	0.88 (0.81-0.95)	0.0010
Age in infants, per month	1.05 (0.99-1.11)	0.0796
Age in children, per year	1.00 (0.97-1.03)	0.7886
Age in adults, per year	1.04 (1.02-1.05)	< 0.0001
STAT Category 2 vs 1	1.75 (1.24-2.46)	0.0013
STAT Category 3 vs 1	2.49 (1.69-3.68)	< 0.0001
STAT Category 4 vs 1	5.14 (3.72-7.11)	< 0.0001
STAT Category 5 vs 1	11.40 (7.17-18.14)	< 0.0001
Weight in neonates, per 1-kg increase	0.58 (0.51-0.65)	< 0.0001
Weight in infants, per 1-kg increase	0.71 (0.65-0.78)	< 0.0001
Prior cardiothoracic operation	1.50 (1.27-1.78)	< 0.0001
Any noncardiac congenital anatomic abnormality	1.35 (1.09-1.66)	0.0056
Any chromosomal abnormality or syndrome	1.57 (1.40-1.77)	< 0.0001
Prematurity (in neonates and infants)	1.39 (1.20-1.60)	< 0.0001
Preoperative/preprocedural mechanical circulatory support	4.27 (3.03-6.03)	< 0.0001
Shock, persistent at time of operation	3.15 (2.46-4.03)	< 0.0001
Renal dysfunction or Renal failure requiring dialysis (or both)	2.12 (1.64-2.73)	< 0.0001
Mechanical ventilation to treat cardiorespiratory failure	2.11 (1.88-2.37)	< 0.0001
Preoperative neurological deficit	1.91 (1.38-2.65)	< 0.0001
Any other preoperative factor	1.61 (1.44-1.80)	< 0.0001

CI = confidence interval: OR = odds ratio.

O'Brien et al. Ann Thorac Surg 2015;100:1054-62.

The Effect of Noncardiac and Genetic Abnormalities on Outcomes Following Neonatal Congenital Heart Surgery



Bahaaldin Alsoufi, MD, *Scott Gillespie, MS, †William T. Mahle, MD, †Shriprasad Deshpande, MD, †Brian Kogon, MD, *Kevin Maher, MD, †and Kirk Kanter, MD

- · Children's Healthcare of Atlanta
- 1538 neonates (2002-2012)
- 312 (20%) with ECM
 - 263 with genetic anomalies
 - · 49 with ECM not associated to GA

Alsoufi B et al. Sem Thorac Cardiovasc Surg. 2016; 28(1):105-13

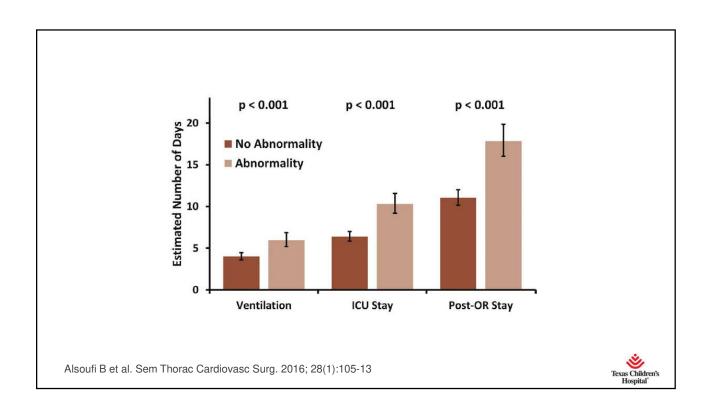


Table 2. Effect of Presence of NC and GA (vs Absence) on Postoperative Survival Among Selected Patient Subgroups. Reported is the HR for Mortality (With 95% Confidence Interval) for NC and GA in Each Patient Subgroup Patient Subgroup Effect of NC and Effect P GA HR (95% CI) NC and GA, Yes 2.38 (1.85-3.07) < 0.001 Weight \leq 2.5 kg 1.91 (1.17-3.12) 0.010 >2.5 kg2.32 (1.72-3.14) < 0.001 Age at operation 1-7 d 2.75 (2.03-3.74) < 0.001 8-31 d 2.08 (1.30-3.30) 0.002 Gender 2.66 (1.93-3.68) < 0.001 Male 2.12 (1.41-3.21) Female < 0.001

Gestation		
Premature	2.14 (1.25-3.65)	0.005
Full term	2.39 (1.78-3.20)	< 0.001
STAT category		
1-3	7.86 (3.26-18.97)	< 0.001
4-5	1.86 (1.42-2.43)	< 0.001
Cardiopulmonary b	vpass use	•
Yes	2.34 (1.73-3.17)	< 0.001
No	2.68 (1.68-4.26)	< 0.001
Underlying cardiac	anomaly	
Single ventricle	1.92 (1.37-2.67)	< 0.001
2 Ventricles	3.14 (2.11-4.67)	< 0.001
Type of cardiac sur	gerv	
Palliation	1.86 (1.38-2.50)	< 0.001
Repair	3.09 (1.91-4.99)	< 0.001

Alsoufi B et al. Sem Thorac Cardiovasc Surg. 2016; 28(1):105-13

Effect of Gastrointestinal Malformations

- Retrospective matched cohort study
- All neonates & infants with GI malformations undergoing CHS

Thoracic GI Malformations	Abdominal GI Malformations
Esophageal Atresia	Duodenal stenosis/atresia
Tracheoesophageal	Imperforate anus
Fistula	Hirschprung disease

Mery CM et al. Ann Thorac Surg. 2017; 104:1590-6.

Gastrointestinal Malformations

- 1:1 or 2:1 variable matching based on:
 - Diagnosis
 - Primary procedure
 - Prematurity (<37 weeks gestation)
 - Presence of a genetic syndrome
- Propensity score including weight and year of surgery

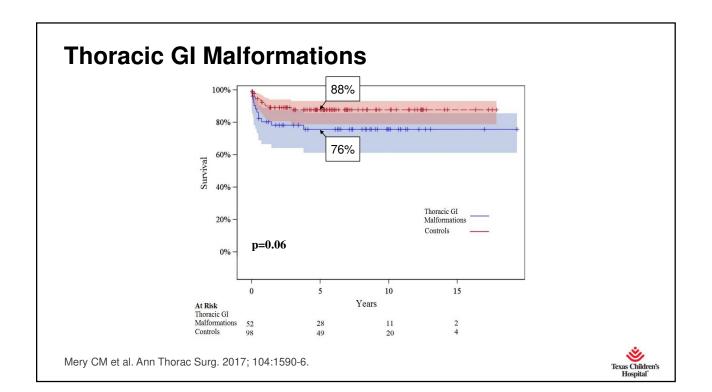
Mery CM et al. Ann Thorac Surg. 2017; 104:1590-6.

Gastrointestinal Malformations

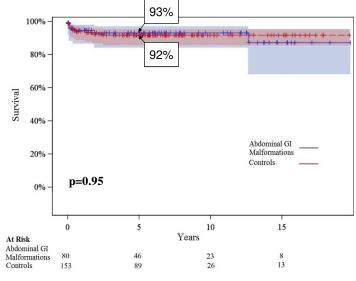
- 383 Patients
 - Thoracic GI malformations (n=52)
 - Thoracic GI controls (n=98)
 - Abdominal GI malformations (n=80)
 - Abdominal GI controls (n=153)
- Median follow-up: 6 years (16 days 20 yrs)

Mery CM et al. Ann Thorac Surg. 2017; 104:1590-6.

Table 4. Outcomes of Patients With Thoracic and Abdominal Gastrointestinal Malformations


Variable ^a	Overall (N = 383)	Thoracic GI Malformations (n = 52)	Thoracic GI Controls (n = 98)	p	Abdominal GI Malformation (n = 80)	Abdominal GI Controls (n = 153)	p
Post-op LOS							
Hospital, d	12 (3-188)	41 (4-188)	13 (3-131)	<0.001 ^b	13 (3-88)	10 (3-149)	0.35
ICU, d	5 (1-142)	9 (1-41)	6 (1-117)	0.006 ^b	6 (1–88)	4 (1-142)	0.24
Intubation, d	2 (0-179)	5 (0-179)	3 (0-15)	<0.001 ^b	2 (0-36)	2 (0-52)	0.56
Peri-op mortality	20 (5)	7 (13)	3 (3)	0.03 ^b	2 (3)	8 (5)	0.50

^a Continuous data are presented as median (range) and categoric data as number (%). b Statistically significant (p < 0.05).


 $GI = gastrointestinal; \qquad ICU = intensive \ care \ unit; \qquad LOS = length \ of \ stay; \qquad peri-op = peri-operative; \qquad post-op = post-operative.$

Mery CM et al. Ann Thorac Surg. 2017; 104:1590-6.

Mery CM et al. Ann Thorac Surg. 2017; 104:1590-6.

Impact of Noncardiac Congenital and Genetic Abnormalities on Outcomes in Hypoplastic Left Heart Syndrome

Angira Patel, MD, MPH, Edward Hickey, MD, Constantine Mavroudis, MD, Jeffrey P. Jacobs, MD, Marshall L. Jacobs, MD, Carl L. Backer, MD, Melanie Gevitz, BA, and Constantine D. Mavroudis, BA

Divisions of Cardiology, and Cardiovascular-Thoracic Surgery, Children's Memorial Hospital, Northwestern University, Chicago II.; Department of Surgery, CHSS Data Center and University of Toronto, Toronto General Hospital, Toronto, Canada; Department of Pediatric and Congenital Heart Surgery, Cleveland Clinic, Cleveland, OH; Division of Thoracic and Cardiovascular Surgery, All Children's Hospital, University of South Florida College of Medicine, St. Petersburg, Fl.; Department of Cardiothoracic Surgery, Drexel University College of Medicine, Philadelphia, PA; Loyola University Chicago-Stritch School of Medicine, Maywood, II.

STS Database (2002-2006)

- Stage 1 (n=1,236)
- Stage 2 (n=702)
- Stage 3 (n=553)

CHSS Critical LVOTO (1994-2001)

703 infants that underwent stage 1 palliation and were followed

Patel A et al. Ann Thorac Surg. 2010; 89:1805-14

STS Database

Table 2. Prevalence of Coexisting Noncardiac Congenital Abnormalities and Genetic Syndromes in Infants Enrolled With the STS Congenital Database (2002 to 2006) Who Underwent Staged Univentricular Palliation for HLHS

Variables	Stage 1 $(n = 1,236)$	Stage 2 $(n = 702)$	Stage 3 (n = 553)
Noncardiac congenital abnormalities or genetic defects	190	91	63
Prevalence (%)	15% ^a	13%ª	11% ^a
	n	п	n
Trisomy 21	1	0	1
Turner syndrome	9	4	5
DiGeorge	2	2	1
22q11 deletion	0	0	1
Williams-Beuren syndrome	0	0	0
Alagille syndrome	0	0	0
Other chromosomal- syndromic abnormality	27	14	8
Rubella	0	0	0
Marfan syndrome	1	0	0
Asplenia	4	1	1
Polysplenia	2	2	1
Other noncardiac abnormality	126	60	42
Multiple syndromes	18	8	3

 $^{^{}a}p = 0.06$ between stages 1, 2, and 3.

HLHS = hypoplastic left heart syndrome; STS = Society of Thoracic Surgeons.

Patel A et al. Ann Thorac Surg. 2010; 89:1805-14

Table 4. Complications Most Frequently Reported to the STS Congenital Database at Each of Stage 1, Stage 2, and Stage 3^a

	Nonca Anor	rdiac	Noncardiac Anomaly		
Variable	n	%	n	%	p Value
Stage 1 (Norwood):					
Delayed sternal closure	346	33	81	43	0.002
Postoperative arrhythmia	131	13	35	18	< 0.01
Ventilation > 7 days	97	9	30	16	< 0.01
Reintubation	84	8	28	15	< 0.01
Stage 2:					
Reoperation (same admission)	10	2	5	6	0.03
Postoperative arrhythmia	34	6	6	7	0.63
Ventilation > 7 days	12	2	5	6	0.06
Reintubation	28	5	9	10	0.04
Phrenic nerve injury	18	3	7	8	0.03
Drainage of pleural effusion	26	4	5	5	0.58

Low cardiac output state	17	3	6	10	0.006
Postoperative arrhythmia	46	9	14	22	< 0.0001
Permanent pacemaker implantation	6	1	4	6	0.004
Septicemia	10	2	4	6	0.06
Persistent neurologic injury	7	1	4	6	0.03
Drainage of pleural effusion	94	19	22	34	0.008

^a Prevalence of complications were then compared between children with or without coexisting noncardiac congenital abnormalities or genetic defects using the Fisher exact test.

STS = Society of Thoracic Surgeons.

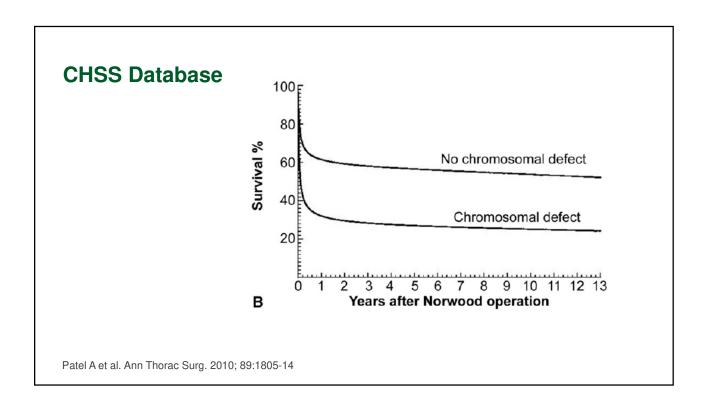
Patel A et al. Ann Thorac Surg. 2010; 89:1805-14

STS Database

Variable	In-hospital Mortality				LOS (Days)	
	N	n	%	p Value	Mean	p Value
Stage 1 (Norwood):						
No noncardiac abnormality	1,029	204	19.8	0.04	30.6	< 0.001
Noncardiac abnormality	187	50	26.7	0.04	41.8	
Stage 2:						
No noncardiac abnormality	611	11	1.8	0.60	11.9	0.02
Noncardiac abnormality	91	2	2.2	0.68	17.7	0.03
Stage 3 (Fontan):						
No noncardiac abnormality	490	10	2	0.18	13.5	0.89
Noncardiac abnormality	63	3	4.8	0.18	13.7	0.89

 $^{^{\}rm a}$ In-hospital mortality and mean postoperative hospital stay were compared between the two groups at each stage.

Patel A et al. Ann Thorac Surg. 2010; 89:1805-14



CHSS Database

Table 6. Incremental Risk Factors for Death During the Early Hazard Phase Post-Norwood Operation for HLHS (N=703) in the CHSS Database

Risk Factor for Death Early Post-Norwood	Parameter Estimate	p Value	Reliability % ^a	
Model A ^b				
Aortic atresia versus critical stenosis	+0.43	0.0007	94	
Smaller birth weight	+0.43	0.0013	67	
Presence of c-existing noncardiac congenital or genetic defect	+0.48	0.0082	51	
Model B ^c				
Aortic atresia versus critical stenosis	+0.43	0.0007	94	
Smaller birth weight	+0.44	0.0013	65	
Presence of a chromosomal abnormality	+0.85	0.0082	53	

Patel A et al. Ann Thorac Surg. 2010; 89:1805-14

Conclusions

- ECM are present in 10-30% of pts undergoing CHS
- The distribution of types of ECM vary depending on the study (probably related to definition and severity)
- ECM, with or without genetic syndromes, are associated with worse short-term and long-term prognosis in patients after CHS

Conclusions

- The effect on morbidity and mortality likely depends on the type of ECM or genetic syndrome
- More studies are needed to define the impact of particular malformations and syndromes on particular patients with CHD to adequate counsel families and direct management

