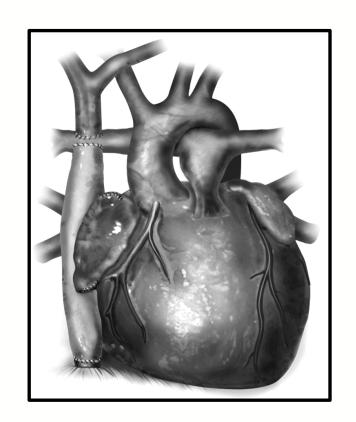
Trying to Find the Right Medication to Improve the Fontan Circulation

Cardiology 2018 Scottsdale, Arizona February 25th, 2108

David J. Goldberg
The Children's Hospital of Philadelphia

Disclosures

- Co-PI on a study (FUEL) supported by NHLBI and Mezzion Pharma Co. Ltd.
- Protocol Development grant funded by Mezzion Pharma Co. Ltd.
- No personal financial disclosures

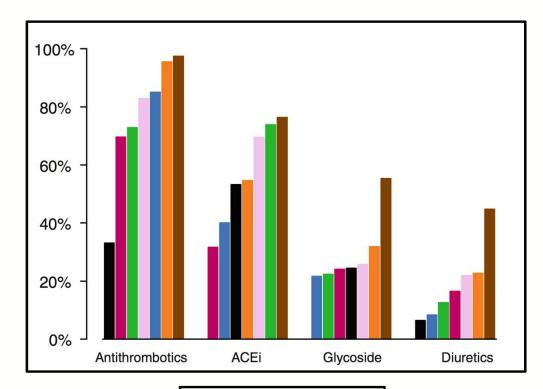


Characteristics of the Fontan Circulation

Elevated central venous pressure and diminished cardiac output

- 1. Progressive decline in exercise capacity
- 2. Liver fibrosis / cirrhosis
- 3. Lymphatic insufficiency
- 4. Early death

Fontan Failure is Different from Heart Failure


- Underlying etiology is different
- Standard heart failures therapies may not be relevant
- Need therapy targeted to unique characteristics of the Fontan circulation

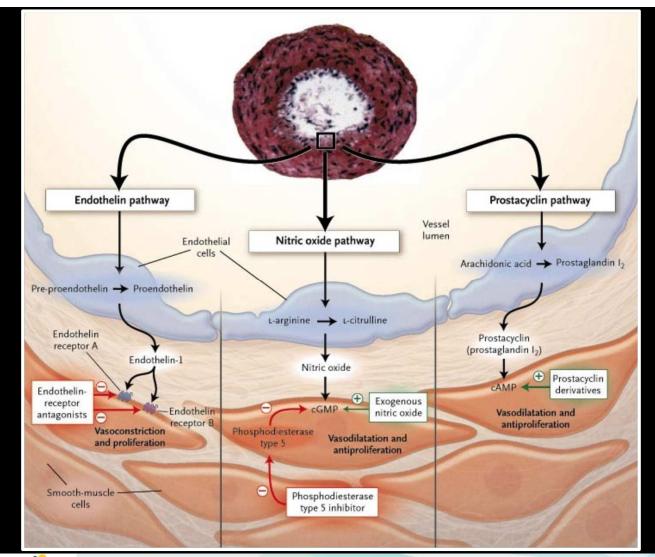
Medical Therapy for the Fontan

- No consensus on appropriate medical treatment
- Significant variability in approach between centers

Anderson et al (Pediatric Cardiol 2010)

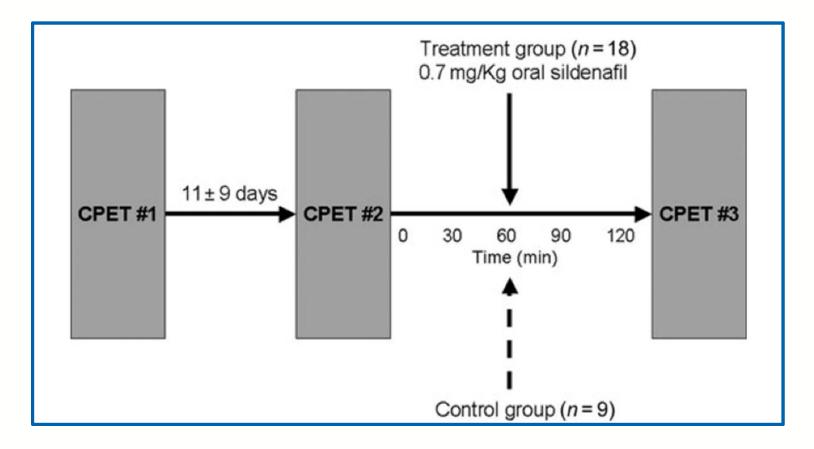
Medical Therapy for the Fontan

- Testing medical therapies is a challenge
 - Single ventricle heart disease is rare
 - Fontan failure is chronic and slowly progressive
 - Low incidence of hard endpoints (death / transplant)
- Exercise capacity
 - Readily measured, used clinically, associated with outcome
 - VO₂ max of 45% predicted threshold for symptoms



Medical Therapy for the Fontan

- Decrease pulmonary vascular resistance
 - Reduce the ΔP needed to drive flow through the pulmonary bed -> decreased systemic venous pressure
 - 2. Allow for improved pulmonary blood flow -> increased preload -> increased cardiac output



Humbert, et al
Treatment of
Pulmonary Arterial
Hypertension
New England Journal
of Medicine, 2004

2008 - Alessandro Giardini

2008 - Alessandro Giardini

Table 2 Change in cardiopulmonary and haemodynamic variables observed in exercise test nos 2 vs. 3 in the sildenafil treatment and in the control group at each exercise stage

Variable	Rest				Peak exerc	ise		
	Sildenafill		Control		Sildenafill		Control	
	Before	After	Before	After	Before	After	Before	After
Cardiac index (L/min/m²)	2.9 ± 0.8	3.7 ± 1.0	2.9 ± 0.9	2.9 ± 0.9	○ 5.1 ± 0.9	5.6 ± 0.9	5.1 ± 0.9	5.2 ± 0.9
PBF index (L/min/m ²)	2.2 ± 0.6	2.8 ± 0.5	2.4 ± 0.5	2.4 ± 0.6	4.2 ± 0.5	4.7 ± 0.6	4.4 ± 0.6	4.4 ± 0.6
Heart rate (b.p.m.)	81 ± 10	83 ± 11	80 ± 12	82 ± 13	136 ± 23	137 ± 24	132 ± 22	133 ± 21
Systolic blood pressure (mmHg)	109 ± 17	100 <u>+</u> 11	111 ± 21	109 ± 14	126 ± 18	122 ± 18	136 ± 17	138 <u>+</u> 14
Diastolic blood pressure (mmHg)	71 ± 13	67 ± 13	72 ± 16	70 ± 11	73 ± 12	70 ± 11	77 ± 13	78 ± 10
SaO ₂ (%)	90 ± 6	90 ± 5	91 <u>+</u> 6	91 ± 5	86 ± 8	87 ± 7	88 ± 8	88 ± 8

Data are presented as mean \pm SD. PBF, pulmonary blood flow; SO₂, arterial oxygen saturation.

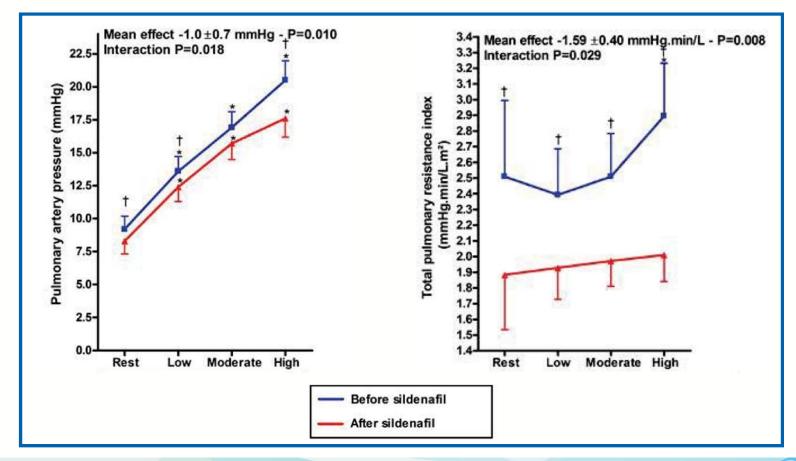
2013 - Jonathan Rhodes

Effect of iloprost on indices	of aerobic fun	iction (outlier	excluded).	
	Median (IQR	!)		
Exercise parameter	Placebo	Iloprost	Iloprost-induced change	p-value
Peak O ₂ pulse (mL/b)	10.8 (2.9)	11.8 (3.8) /	1.2 (0.9)	0.0002
Peak V _{O2} (mL/kg/min)	27.6 (10.2)	30.2 (8.8)	1.6 (2.0)	0.0040
%Predicted peak V _{O2} (%)	68.6 (18.6)	69.5 (19.8)	3.9 (6.8)	0.0203
Peak work rate (W/kg)	2.1 (1.0)	2.0 (0.8)	0.0 (0.3)	0.7148

16.9 (5.4)

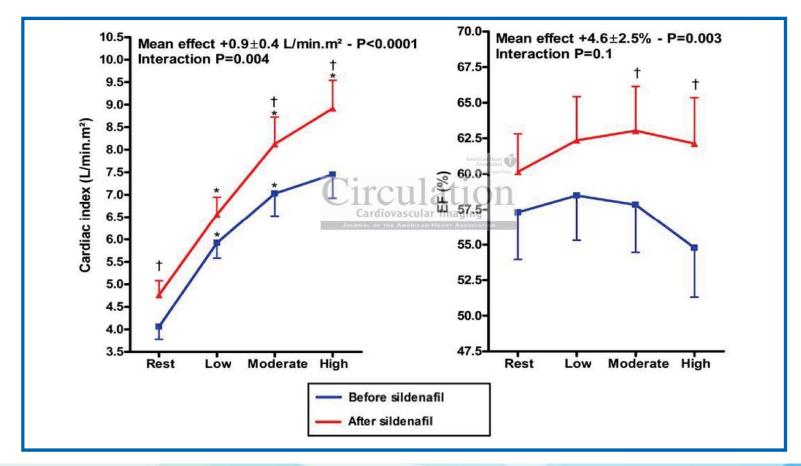
0.4(2.0)

14.2 (5.9)



V_{O2} at VAT (mL/kg/min)

0.1040


2013 – Alexander Van De Bruaene

2013 – Alexander Van De Bruaene

2012 - David Goldberg

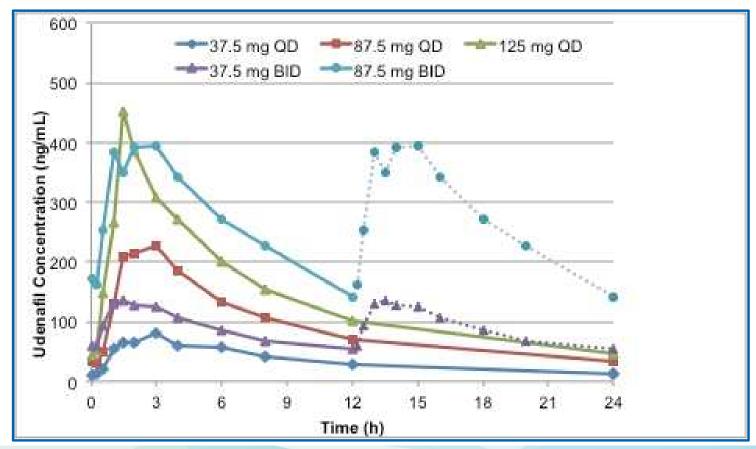
	Coefficient* ml/kg/min	95% Confidence Interval	p-value
VO2 max	-0.39	(-2.69, 1.92)	0.73
VO2 at AT	1.38	(-0.19, 2.96)	0.08
VO2 at AT (BNP > 100)	1.85	(0.59, 3.12)	< 0.01
VO2 at AT (LV and MV)	1.77	(0.58, 2.97)	< 0.01

^{*} Each regression coefficient corresponds to the difference in the average post-phase outcome between Sildenafil and placebo; adjusted for pre-phase values, study period, and treatment sequence

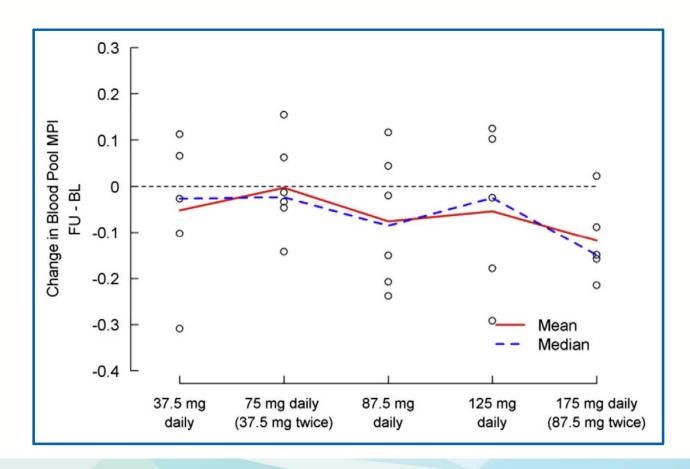

2012 - David Goldberg

	Coefficient*	95% Confidence Interval	p-value
MPI	-0.050	(-0.093, -0.007)	0.02
VTI x HR	83.1	(-59, 225)	0.24
E:A ratio	0.10	(-0.10, 0.29)	0.31

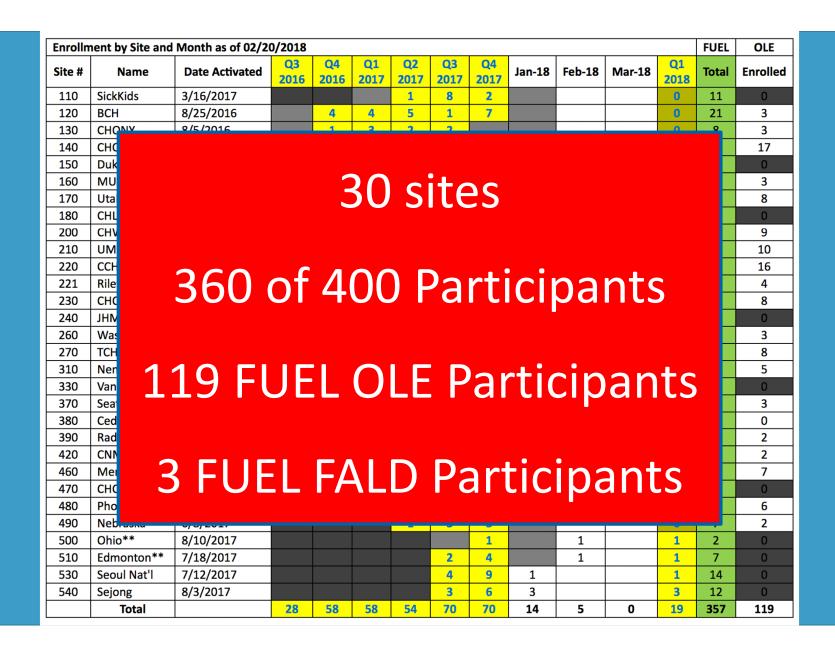
2014 – Anders Hebert


Pediatric Heart Network / Mezzion Pharma

- Unique collaboration between NHLBI and pharma
- Program to evaluate udenafil in adolescents with Fontan physiology
- Phase I/II pharmacokinetic / dose-finding study


2017 - Pediatric Heart Network / Mezzion Pharma

2017 - Pediatric Heart Network / Mezzion Pharma


Fontan Udenafil Exercise Longitudinal Trial

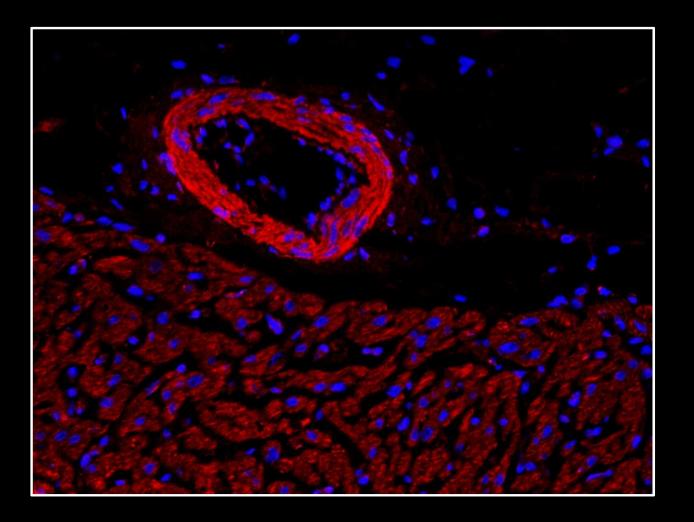
FUEL Trial

- Phase III clinical trial designed to evaluate the effect of udenafil on adolescents with Fontan over a 6 month period
 - Exercise capacity, ventricular performance, peripheral vascular function, brain-type natriuretic peptide
- 12 month open label safety extension study (FUEL-OLE)
- FUEL FALD: impact of udenafil on liver stiffness

PDE-5 and Ventricular Function

- Improved filling?
- Direct
 myocardial
 effect of PDE5
 inhibition?

PRE-CLINICAL RESEARCH


Sildenafil Stops Progressive Chamber, Cellular, and Molecular Remodeling and Improves Calcium Handling and Function in Hearts With Pre-Existing Advanced Hypertrophy Caused by Pressure Overload

Takahiro Nagayama, PhD,* Steven Hsu, BA,* Manling Zhang, MD, PhD,* Norimichi Koitabashi, MD, PhD,* Djahida Bedja, MS,† Kathleen L. Gabrielson, PhD,† Eiki Takimoto, MD, PhD,* David A. Kass, MD*

Baltimore, Maryland

3 year-old Fontan
Single right ventricle
Transplanted for
systolic dysfunction

Brian Snarr, MD Preliminary Data

Summary

- Growing pool of short- and mid-term data suggesting a role for pulmonary vasodilators
- PDE5 inhibitors may be uniquely suited given their efficacy and safety profile
 - May have an additional direct myocardial benefit
- FUEL / FUEL OLE / FUEL FALD Trials will provide data on long(er)-term efficacy, safety, potential impact on the liver

Thank You!

