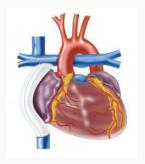


Transplant can work for some but is not for all and is not a cure

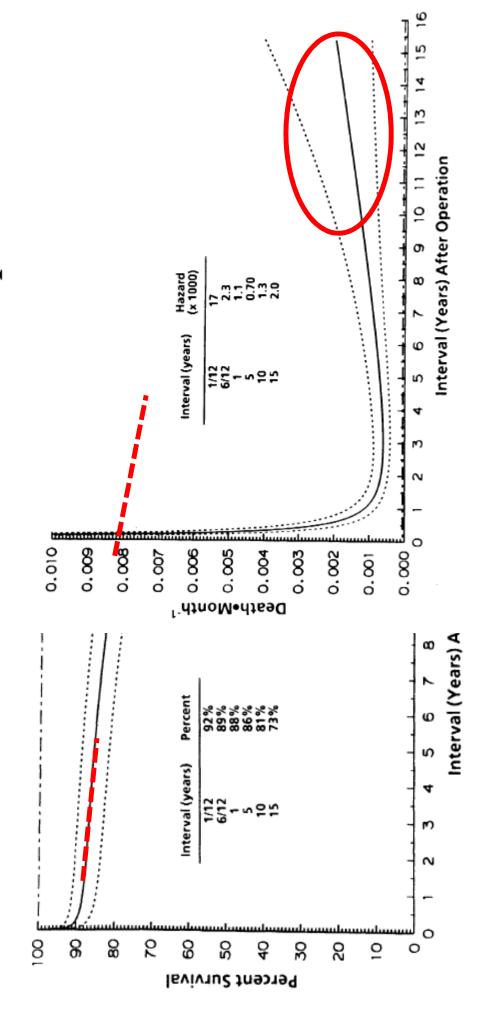


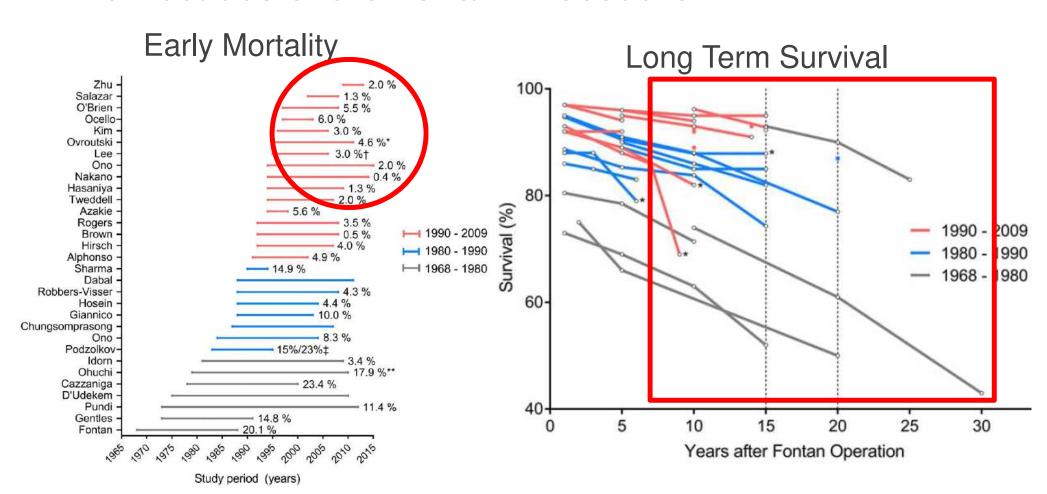
21st Annual Update on Pediatric and Congenital Cardiovascular Disease Daphne T. Hsu, MD
Professor of Pediatrics, Albert Einstein College of Medicine
Division Chief and Co-Director, Pediatric Heart Center,
Children's Hospital at Montefiore

Transplant can work for some but is not for all and is not a cure

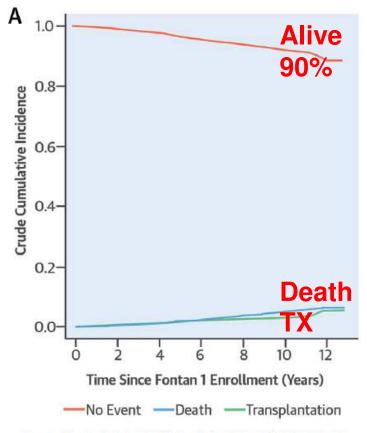
21st Annual Update on Pediatric and Congenital Cardiovascular Disease Daphne T. Hsu, MD
Professor of Pediatrics, Albert Einstein College of Medicine
Division Chief and Co-Director, Pediatric Heart Center,
Children's Hospital at Montefiore

Disclosures

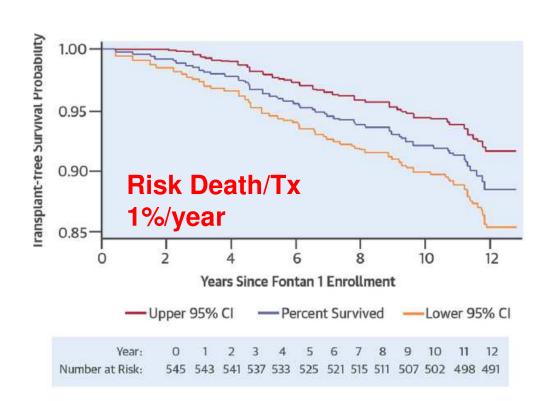

None



Outcome After a "Perfect" Fontan Operation



Five Decades of the Fontan Procedure



Kverneland et al. Congenital Heart Disease. 2018;1–13

Contemporary Outcomes in Fontan Survivors: Pediatric Heart Network Fontan Longitudinal Study 2003-2014

Atz, A.M. et al. J Am Coll Cardiol. 2017;69(22):2735-44.

Predictors of Death/Transplant: PHN Longitudinal Study

Hazard Ratio (95% CI)

0.51 (0.29-0.88)

0.86 (0.81-0.91)

0.98 (0.96-1)

0.82 (0.4-1.68)

0.99 (0.95-1.02)

0.98 (0.94-1.01)

1.85 (1.01-3.38)

3.65 (2.00-6.65)

p Value*

0.015

< 0.001

0.038

0.59

0.46

0.22

0.045

< 0.001

TABLE 5 Cox Model for Predictors of Death or Cardiac Transplantation (Total N = 545; 54 Events)

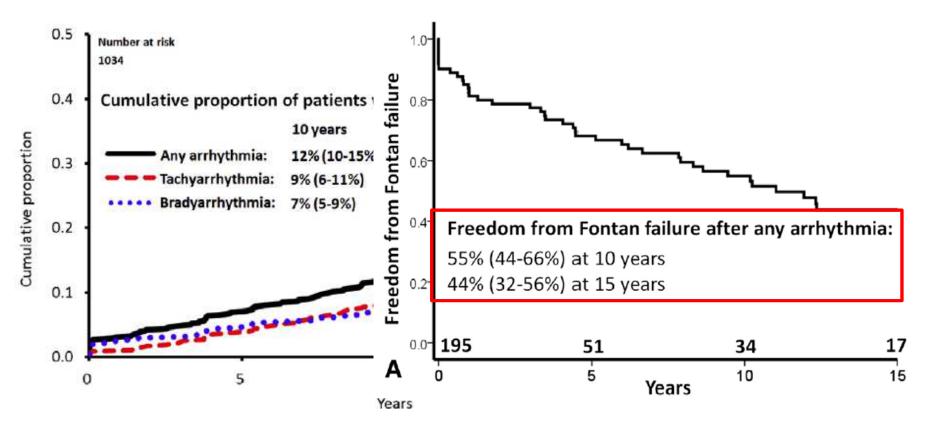
	Events/Total	Hazard Ratio (95% CI)	p Value*		Events/Total
Age at Fontan 1 enrollment	54/545	1.01 (0.94-1.09)	0.79	Fontan 1 exercise test completed	54/545
Ventricular type	54/545	,	0.11	Resting oxygen saturation, %	33/404
Left		0.63 (0.30-1.32)	0.22	Percent predicted Vo ₂ at anaerobic	22/316
Right		1.19 (0.59-2.44)	0.63	threshold. %	
Mixed		Reference		With maximum effort	32/400
Fontan type	54/545		0.60	Percent predicted maximum Vo ₂ , %	12/165
Atriopulmonary connection		Reference		Percent predicted maximum	12/165
Intracardiac lateral tunnel		1.29 (0.50-3.32)	0.60	work rate, %	
Extracardiac conduit		1.75 (0.65-4.75)	0.27	Chronotropic index, 0.1-U increase	9/140
Other		2.00 (0.39-10.31)	0.41	BNP >21 and CHQ-PF50 physical	48/482
Fontan 1 CHQ-PF50 physical summary score	49/510	0.97 (0.95-0.98)	<0.001	summary score <44	10,102
Fontan 1 CHQ-PF50 physical summary score	49/510		0.001		
<44		4.78 (1.98-11.59)	< 0.001		
44-52		2.59 (1.01-6.63)	0.047		
>52		Reference			
Fontan 1 CHQ-PF50 psychosocial	49/510	1.00 (0.98-1.03)	0.91		

Atz et al. J Am Coll Cardiol 2017;69:2735-44

summary score

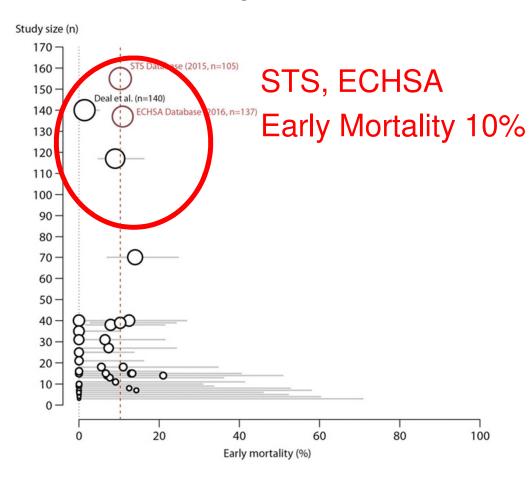
Late Morbidities In Patients Following the Fontan

- Arrhythmias/Sudden Death
- Decreased ejection fraction
 - Exercise intolerance and fatigue
 - Venous congestion
 - Poor growth
- Preserved ejection fraction
 - Venous congestion
 - PLE/Plastic Bronchitis
 - Ascites


- Thromboembolic
 Disease
- Extracardiac organ dysfunction
 - Kidney
 - Neurologic
 - Liver

Late Morbidities In Patients Following the Fontan

- Arrhythmias/Sudden Death
- Decreased ejection fraction
 - Exercise intolerance and fatigue
 - Venous congestion
 - Poor growth
- Preserved ejection fraction
 - Venous congestion
 - PLE/Plastic Bronchitis
 - Ascites

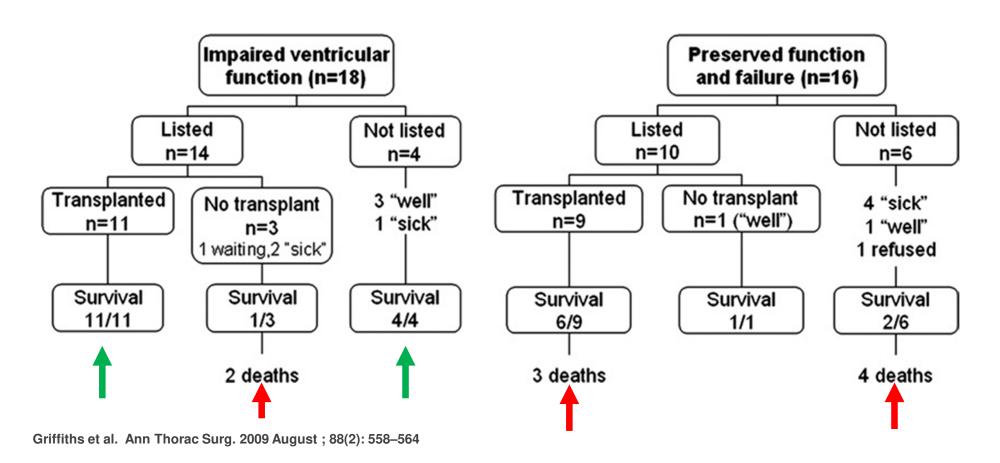

- Thromboembolic
 Disease
- Extracardiac organ dysfunction
 - Kidney
 - Neurologic
 - Liver

Long-term outcomes after first-onset arrhythmia in Fontan physiology

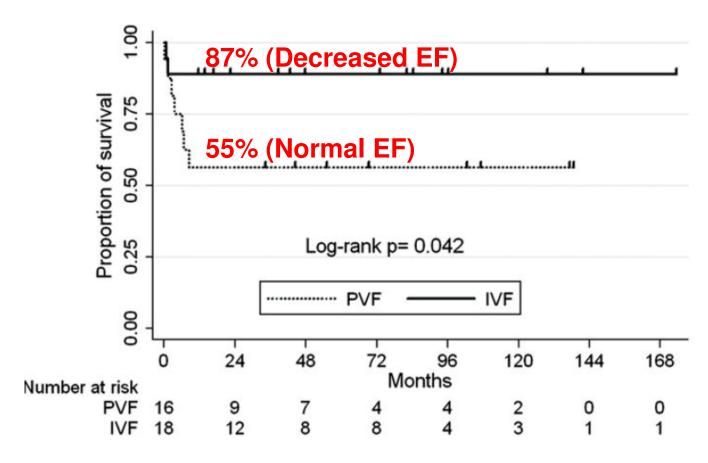
Carins et al. J Thorac Cardiovasc Surg. 2016. 152: 5 1355

2017: Metanalysis of Outcomes of Fontan Conversion

Indications


- Atrial tachyarrhythmia
- APC Fontan
- Younger age

Contraindications


- Older age > 27 years
- Atrioventricular valve regurgitation
- Protein losing enteropathy
- Severe ventricular dysfunction
- Male gender
- Peak VO2 ≤ 14 ml/kg/m²

Brida et al. International Journal of Cardiology 236 (2017) 132-137

Outcomes of Fontan patients Referred for Transplant Decreased (n=18/34) vs. Normal (n=16/34) EF

Diffrence in One Year Survival After Transplant Evaluation by Ejection Fraction

Griffiths et al. Ann Thorac Surg. 2009 August; 88(2): 558-564

Fontan Liver Disease: Japanese Survey

- Survey 2008-2009
- 75 centers, 2,700 patients
- 1.15% prevalence
 - Liver cirrhosis (LC)12
 - HepatocellularCarcinoma (HCC)
 - -LC + HCC 3

Age at 1st diagnosis (years)	
LC	23 (13–34)
HCC	31 (22-44)
Age at 1st Fontan procedure* (years)	8.2 (1–15)
Time to diagnosis from the 1st Fontan procedure (years)	
LC	14.5 (5–24)
HCC	21.6 (7–31)
Mean NYHA heart failure classification (n=16)	2.1
NYHA heart failure classes (n)	
Class I	3
Class II	9
Class III	4
SpO ₂ (%; n=16)	88±6

Kuwabara et al. Circ J. advanced pub by J-stage released on line Feb.14.2018

WHO SHOULD BE TRANSPLANTED AND WHEN?

Heart Transplant for Congenital Heart Disease

The New York Times

NEW YORK, THURSDAY, DECEMBER 7, 1967

Heart Transplant Fails to Save 2-Week-Old Baby in Brooklyn

By RICHARD D. LYONS

plant a human heart ended lessness underscored the eyes fatally at a Brooklyn hospital of the surgeon as he told of yesterday when an infant in the "heroic attempt" of his whom surgeons had placed a 22-member team of doctors, s heart from another baby boy nurses and technicians to "saldied 61/2 hours after the in-vage" the infant's life. tricate operation.

cardiac surgeon and researcher said. who performed yesterday's opdenly" at 1 P.M.

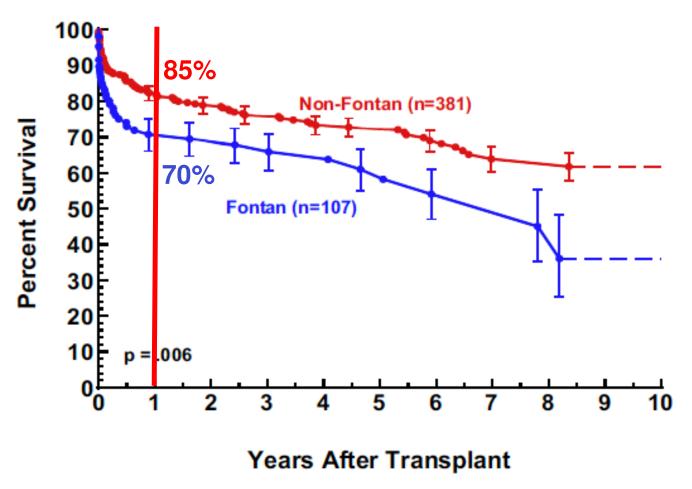
The surgery, begun at 4:15 A.M., lasted 2 hours 15 minutes.

heart failed," Dr. Kantrowitz told a news conference at Maimonides Medical Center, where the surgery was performed.

A second attempt to trans- Lines of tension and sleep-

The team members were "dis-Dr. Adrian Kantrowitz, the heartened and feel sad," he

"We were trying to make one f eration, said the transplanted whole individual out of two a heart had appeared to be work-individuals who did not have ing well until it "stopped sud- a chance for survival when they 4 were born," Dr. Kantrowitz 4

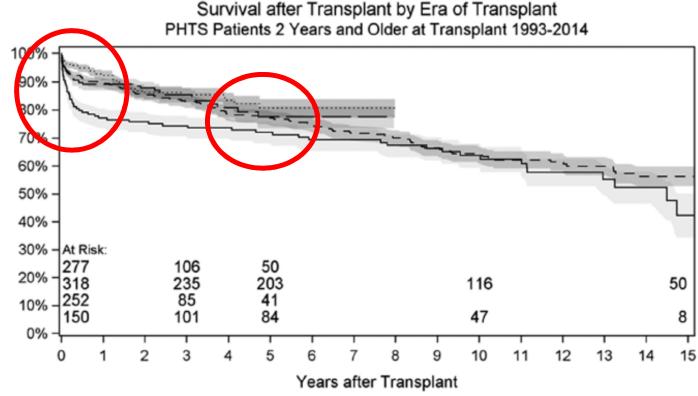

The baby in whom the heart i was placed, the surgeon said, was born with a deformed heart time why this transplanted valve that would have caused This defect "precluded longterm survival," while the donor infant was born with a brain

Continued on Page 34, Column 2

First human heart transplant in the USA

- Dec. 7, 1967
- 3 days after Dr. Christiaan Barnard transplanted adult patient in South Africa
- 19 day old with Tricuspid Atresia
- Baby died suddenly within 6 ½ hours

Post-Transplant Survival 1990-2002: Fontan vs. Other CHD


Lamour et al J Am Coll Cardiol 2009;54:160-5

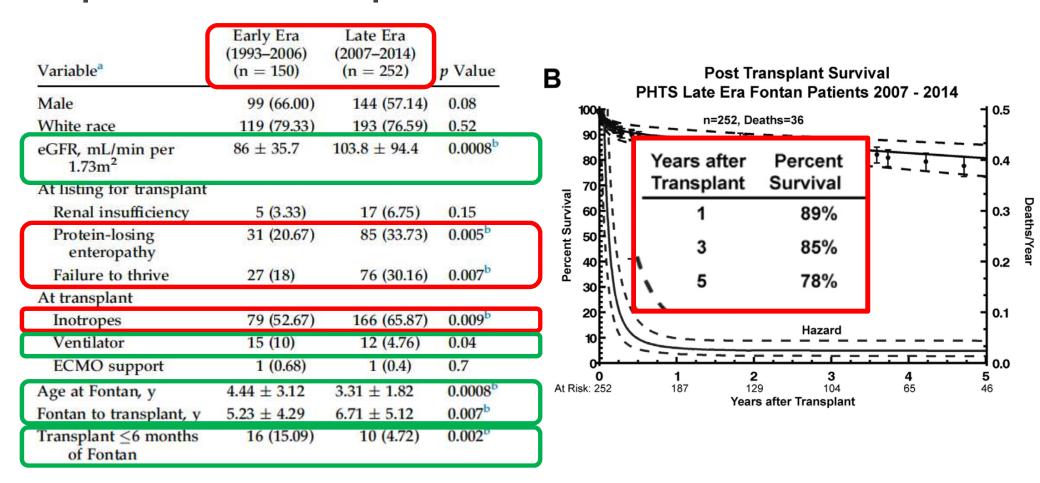
Early and Late Risk Factors: Transplant for CHD 1990-2002

	Variable	Relative Risk	p Value	
Early phase				
	Older recipient age	1.5	0.02	
Previous Fontan operation			8.	6
	Interaction of donor age and ischemic time	1.4	0.0007	
	Higher pre-Tx mean RAP (only in patients without previous Fontan)	2.4	<0.0001	
	Constant phase			
	Younger recipient age	1.8	0.0001	
	Higher systolic transpulmonary gradient	2.0	0.01	
	CMV+ donor, CMV- recipient	2.8	0.001	
	Previous classical Glenn operation	3.1	0.01	

Fontan Patient Su Heart Transplanta in the Current Era

Kathleen E. Simpson, MD, Eli David C. Naftel, PhD, Rakesh Aliessa P. Barnes, MD, and Cl

Fontans: 1993 - 2006 (n = 150, Deaths = 57)

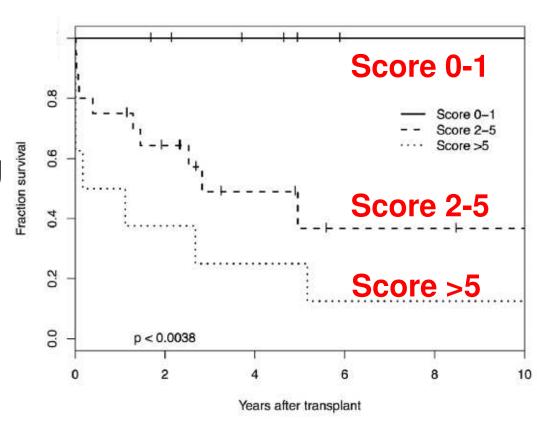

Fontan: 2007 - 2014 (n = 252, Deaths = 36)

CHD: 1993 - 2006 (n = 318, Deaths = 112)

CHD: 2007 - 2014 (n = 277, Deaths = 36)

Shaded areas indicate 70% confidence limits p (log-rank) = 0.0466
Event: Death after Transplant

Improved Post-Transplant Survival: 2007-2014

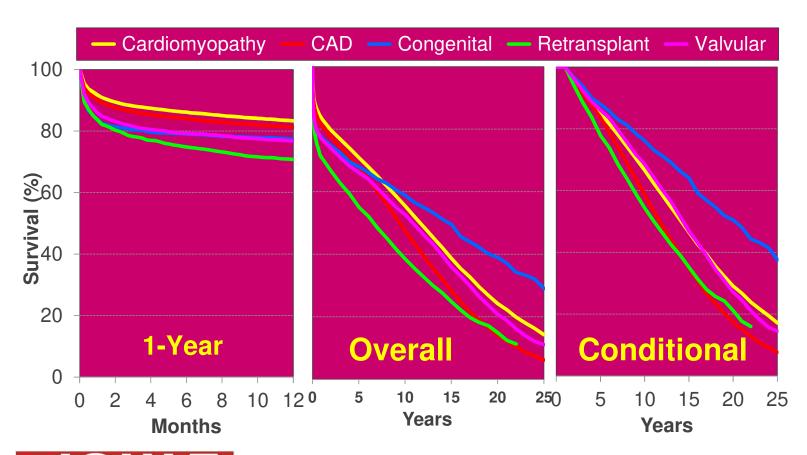

Simpson et al. Ann Thorac Surg 2017;103:1315-21

Mortality Risk Stratification in Fontan Patients Who Underwent Heart Transplantation

Christopher J. Berg, MS^a, Brenton S. Bauer, MD^{a,b,c}, Abbie Hageman, BS^{a,d}, Jamil A. Aboulhosn, MD^{a,c,d}, and Leigh C. Reardon, MD^{a,c,d,e,*}

Am J Cardiol 2017;119:1675e 1679

- Systemic EF < 20%
- AV valve regurg ≥ moderate
- Fontan pressure > 16 mmHg
- Renal replacement therapy
- ECMO
- MELD XI excluding INR


US Organ Allocation Changes: Patients ≥ 18 years

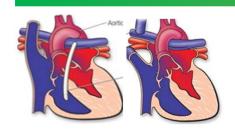
04-4	N					
Status	s Proposed Criteria					
1	i. ECMO ii. Mechanical ventilation iii. Non-dischargeable BiVAD or RVAD iv. Mechanical circulatory support with life-threatening ventricular arrhythmia					
2	 i. Intra-aortic balloon pump ii. Acute circulatory support device ii. Ventricular tachycardia/ventricular fibrillation, mechanical support not required iii. Mechanical circulatory support with device malfunction/mechanical failure iv. Total artificial heart v. Dischargeable BiVAD or RVAD 					
3	 i. LVAD for up to 30 days ii. Status 1A exception iii. Multiple inotropes or single high-dose inotropes with continuous hemodynamic monitoring iv. Mechanical circulatory support with device-related complications other than infection, thromboembolism, device malfunction/mechanical failure or life-threatening ventricular arrhythmia v. Mechanical circulatory support with device infection vi. Mechanical circulatory support with thromboembolism 					
4	Diagnosis of congenital heart disease (CHD) with:					
	v. Stable LVAD candidates after 30 days´ vi. Inotropes without hemodynamic monitoring vii. Diagnosis of amyloidosis viii. Retransplant ix. Status 1B exception					
5	Combined organ transplants: heart-lung; heart-liver;					
	heart-kidney					
6	All remaining active candidates					
7	Inactive/not transplantable					

Qualification:

- Candidate is admitted to the transplant hospital that registered the candidate on the waiting list
- Transplant physician believes, using acceptable medical criteria, that a heart candidate has an urgency and potential for benefit comparable to that of other candidates at the requested status

Transplant Survival by Underlying Diagnosis One Year, Overall, Conditional

Who Should Be Transplanted?


- Heterotaxy, unbalanced AV canal, pulmonary stenosis
- Bidirectional Glenn (4 years), EC Fontan completion (9 years)
- Ages 9-21 years: graduated high school, travelled the world, graduated college, worked as LPN
 - Ventricular function mildly depressed
 - Intermittent nonsustained atrial tachycardia @125-130, (5-10 min, 3/wk)
- Age 22 years: starting nursing school
 - IVC narrowed on echo, Stent IVC (IVC mean 12, PA mean 10 mmHg)
 - Liver fibroscan score 15, ultrasound normal
- 23 years: Graduating from nursing school this summer. Complaints of tachycardia, dizziness
 - IART and atrial tachycardia up to 180 bpm
 - Liver fibroscan score 25


Transplant vs Management of Fontan Morbidities?

- Pro-Transplant
 - Survival one year 90-95%, 10 year survival 70-80%
 - Ongoing risk progressive liver dysfunction would preclude transplant
 - Risk of recurrent arrhythmias, ventricular dysfunction, PLE
 - Timing: graduating school, parental insurance
- Pro- Continued management of Fontan
 - One year mortality 5-10%, Ten-year mortality 20-30%
 - Have not tried pulmonary vasodilators, stent redilation, arrhythmia management
 - Risk of post-transplant morbidities

TRANSPLANT: THE FOURTH STAGE

LIVING WITH A SINGLE VENTRICLE

Stage 1: Balance pulmonary and systemic blood flow

Stage 2: Decrease volume load on heart

Stage 3: Improve oxygen delivery

Stage 4: Prevent morbidity from Fontan physiology

Stage 5: Prevent morbidity from transplant

Transplant can work for some but is not for all and is not a cure...

and
has a greater chance of
success if offered earlier
before patients develop
significant morbidities from
the Fontan